
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the 
text directly from the original or copy submitted. Thus, some thesis and 
dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the copy 
submitted. Broken or indistinct print, colored or poor quality illustrations and 
photographs, print bleedthrough, substandard margins, and improper alignment 
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and 
there are missing pages, these will be noted. Also, if unauthorized copyright 

material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning 
the original, beginning at the upper left-hand comer and continuing from left to 
right in equal sections with small overlaps. Each original is also photographed in 
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced 
xerographically in this copy. Higher quality 6” x 9” black and white photographic 
prints are available for any photographs or illustrations appearing in this copy for 
an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning 
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 

800-521-0600

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

Essays of Empirical Studies in Agricultural and Resource Economics

By

Zhihua Shen

B.A. (Fudan University, Shanghai, P. R. China) 1991 

M.S. (University of California, Berkeley) 1995 

M.A. (University of California, Berkeley) 1998

A dissertation submitted in partial satisfaction of the 

requirement of the degree of 

Doctor o f Philosophy 

in

Agricultural and Resource Economics 

in the

GRADUATE DIVISION 

of the

UNIVERSITY OF CALIFORNIA, BERKELEY

Committee in charge: 

Professor Jeffrey Perloff, Chair 

Professor Lany Karp 

Professor Daniel McFadden 

Professor David Zilberman

Spring 2000

R eproduced  with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

UMI Number 9979805

___ ®

UMI
UMI Microform 9979805 

Copyright 2000 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Essays o f Empirical Studies in Agricultural and Resource Economics

Copyright Spring 2000 

by

Zhihua Shen

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

To,

My Parents.

in

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Table of Contents

CHAPTER 1 O V ERVIEW ..............................  1

CHAPTER 2 ESTIMATING A DEMAND SYSTEM W ITH NONNEGATIVITY CONSTRAINTS: 
MEXICAN MEAT DEMAND______________________________________________________________ 3

2.1 Introduction......................................................................................................................................... 3
2.2 AIDS Model............................................................................................................................................5
2.3 Estimation Approach.......................................................................................................................... 7

2.3.1 Maximum Entropy.....................................................................................................................7
2.3.2 Estimating an AIDS Model using GME.................................................................................. 9

2.4 Data........................................................................................................................................................12
2.5 Estimation............................................................................................................................................13

2.5.1 Prediction................................................................................................................................ 14
2.5.2 Elasticities and Confidence Intervals....................................................................................15
2.5.3 Complete Demand System ....................................................................................................../5
2.5.4 Comparison with Other Estimates.........................................................................................16
2.5.5 Demographic Effects...............................................................................................................17

2.6 Conclusions........................................................................................................................................ 17
REFERENCES.....................................................................................................................................................19
2.7 APPENDIX: PROPERTIES OFTHE GENERALIZED MAXIMUM ENTROPY ESTIMATOR.........................24

CHAPTER 3 BETTER ESTIMATES OF AGRICULTURAL SUPPLY RESPONSE-------------------35

3.1 Introduction....................................................................................................................................... 35
3.2 The Agricultural Supply Model...................................................................................................37

3.2.1 Ordinary Least Squares..........................................................................................................38
3.2.2 Minimum Expected Loss Estimators.....................................................................................39
3.2.3 Bayesian Method o f  Moments Estimator............................................................................. 41

3.3 A Generalized Maximum Entropy Approach ............................................................................42
3.3.1 Maximum Entropy..................................................................................................................42
3.3.2 GME Estimator....................................................................................................................... 44

3.4 Experiments.........................................................................................................................................47
3.4.1 Experimental Design..............................................................................................................47
3.4.2 Results..................................................................................................................................... 49

3.5 Prior Information in Shrinkage Estimators............................................................................. 52
3.6 Conclusions........................................................................................................................................53
REFERENCES.................................................................................................................................................... 55

CHAPTER 4 M ELO ESTIMATES O F WILLINGNESS-TO-PAY IN DICHOTOMOUS CHOICE 
CONTINGENT VALUATION.____________________________________________________________ 69

4.1 Introduction.......................................................................................................................................69
4.2 WTP MODEL.......................................................................................................................................... 70
4.3 MELO Approach ................................................................................................................................ 72
4.4 Monte Carlo Experiments...............................................................................................................76

4.4.1 The First MC Experiment.......................................................................................................76
4.4.2 The Second and Third Monte Carlo Experiments...............................................................77

4.5 Applications of MELO......................................................................................................................79
4.5.1 Hanemann andet al (1991 ) ’s study.......................................................................................79
4.5.2 Riddle and Loomis (1998) ‘s Study....................................................................................... 80

4.6 Use of  Prior Information in MELO................................................................................................81

iv

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

4 .7  C o n c l u s io n s .................................................................................................................................................................82
REFERENCES............................................................................................................................... 83
4 .8  APPENDIX.......................................................................................................................................................................... 87

4.8.1 The MELO and Second-order Taylor Approximation...................................................... 87
4.8.2 Derivation o f  MELO Estimate o f  Truncated Mean WTP*.................................................89

v

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

List of Tables

Table 2-1 Summary Statistics........................................................................................................ 28

Table 2-2 GME Estimates of LA/AIDS Meat Demand System................................................... 29

Table 2-3 Correlations between Observed and Predicted Shares..................................................30

Table 2-4 Estimated Hicks Price and Expenditure Elasticities..................................................... 31

Table 2-5 Comparisons of Meat-Only and Complete Demand Systems...................................... 32

Table 2-6 Estimated Marshallian Own-Price Elasticities in Other Studies.................................. 33

Table 2-7 Percentage Point Change in Share Due to a Change in an Exogenous Variable.......... 34

Table 3-1 Mean Square Error of the Estimated a from Experimental Data.................................. 59

Table 3-2 Empirical Distributions of the Estimated Supply Response Coefficient a ..................60

Table 3-3 Empirical Distributions of Estimated Supply Response Coefficient a ........................ 62

Table 3-4 Estimates of the Structural Coefficients.................................................  64

Table 3-5 Correlations between A and A .................................................................................... 65

Table 3-6 GME-S Correlations between P* and P* and between A* and A*................................ 66

Table 3-7 MSE When the Distributions of ou and oe are Not Normal.......................................... 67

Table 3-8 MSE For Various Supports...........................................................................................68

Table 4-1 Empirical Distributions of the Estimated Median WTP............................................... 95

Table 4-2 Empirical Distribution of the Estimated Truncated Mean WTP*................................. 96

Table 4-3 Replication of the Monte Carlo Experiments in Kanninen’s (1995)............................ 97

Table 4-4 Replication of the Monte Carlo Experiments in Cooper and Loomis (1993).............. 98

Table 4-5 Re-etimates of Median WTP in Hanemann, Loomis, and Kanninen (1991)...............99

Table 4-6 Re-estimates of Median WTP in Riddle and Loomis (1998)......................................100

Table 4-7 Estimated Median WTP under Diffuse and Informative prior.................................... 101

vi

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

List of Figures

Figure 3.1 The Empirical Distribution of Alapha..........................................................................58

Figure 4.1 Dichotomous Choice (DC) Willingness-to-pay (WTP) Model....................................91

Figure 4.2 Empirical Distribution of Media WTP, B ~ Unif(0, 20)............................................ 92

Figure 4.3 Empirical Distribution of Media WTP, B -  Unif(0, 10).............................................93

Figure 4.4 Empirical Distribution of Media WTP, B -  Unif(10, 20).......................................... 94

vii

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Acknowledgements

I want to thank my advisor Jeffrey Perioff for his support, encouragement, and guidance 

during my graduate study at Berkeley. I want to thank Larry Karp who provided me with 

numerous insightful suggestions. I also want to thank David Zilberman for his support and 

encouragement for conducting innovative research. I want to thank Daniel McFadden for many 

valuable comments. I want to thank Amos Golan and George Judge who provide generous help 

in my learning of maximum entropy. I am grateful to Arnold Zellner for his numerous 

suggestions and new ideas for future research. I want to thank the faculty and students who have 

participated in the Resource Economics Seminars where I presented my work. I also want to 

thank the graduate students and staff at ARE as a whole with whom I have been enjoying 

working.

I want to thank Yuan Ge, my brother-in-law, and my sisters for their support throughout 

my study at Berkeley. Finally, I want to thank Pu Yang, my wife.

viii

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Chapter 1 Overview

This dissertation investigates some econometrics methods with an aim to provide better 

quantitative results in a few important issues in agricultural and environmental economics. In 

particular, it focuses on the application of new estimators such as maximum entropy by Golan, 

Judge, and Miller (1996) as well as minimum expected loss estimator and Bayesian method of 

moment estimator by Zellner (1978,1996,1997).

The first essay proposes a new estimator to solve the problem of estimating system of 

demand equations with non-negativity constraints. Traditionally, there are two approaches to 

tackle this problem. The first is the maximum likelihood (ML) approach and the second one is 

Amemiya’s two-stage estimator. These two approaches have some limitations in empirical work. 

ML is complicated in practice when the number of equations is large and the two-stage estimator 

is not efficient. We adopted a new approach -  maximum entropy estimator that is single-staged, 

robust, and easy to impose non-negativity as well as other restrictions from economic theory. It is 

demonstrated to be more efficient than the traditional approaches. We applied that method into 

an estimation of AIDS model using Mexican household expenditure data.

The second essay aims to improve the supply elasticity estimates from Nerlove’s 

agricultural supply, a is a widely used econometric model. Literature shows that the estimated 

supply elasticities using the least square method have wide variation. We suggest two new 

approaches to improve the estimates. The first method is maximum entropy and the second 

method is Zellner’s Bayesian method of moments. Monte Carlo experiment shows that both 

methods yield more accurate and stable estimates than the least square and minimum expected 

loss approach.

The third essay studies the willingness-to-pay estimates in contingent valuation studies. 

Dichotomous choice model has been widely used as contingent valuation tool to assess many

1
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non-market resources and public goods such as park, beach, and national forest. The key 

estimates, WTP, however suffer from biasness and variability in empirical studies. While many 

papers focus upon such factors as starting-point bias and hypothetical market bias, one important 

factor has been neglected. The widely used ML estimates of WTP involve ratio of random 

variables and thus do not possess desirable properties in finite samples. This essay suggests the 

minimum expected loss (MELO) technique to solve this problem. Given diffuse prior, the MELO 

estimates are demonstrated to be more accurate and stable than the ML ones. Given non-diffuse 

prior, the MELO estimates become even more accurate. It is applied into two contingent 

valuation studies in California and Oregon.

2
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Chapter 2 Estimating a Demand System 

with Nonnegativity Constraints: Mexican 

Meat Demand

2.1 Introduction

We present a new approach to efficiently estimate a system of many equations with 

binding nonnegativity constraints. Using this approach, we estimate both five-equation and six- 

equation meat demand systems based on data from a cross-section survey of Mexican households. 

Most of these households did not purchase one or more of these meat products during the survey 

week. We compare our demand elasticity estimates for Mexico to estimates of those in wealthier 

countries. We also show how elasticities of demand vary with demographic characteristics.

There have been relatively few previous attempts to estimate demand systems with 

binding nonnegativity constraints.1 We know of only one study, Heien and Wessells (1990), that 

estimates a many-equation demand system with nonnegativity constraints with variable prices. 

They use a two-stage Amemiya (1974) approach to estimate an Almost Ideal Demand System 

(AIDS, Deaton and Muelbauer, 1980) for 11 food items with an emphasis on dairy products.

Although such two-step methods are consistent, they are not invariant to the choice of 

which good is dropped, and they are inefficient and require specific distributional assumptions. 

Flood and Tasiran (1990) find that the Amemiya two-stage estimator performs poorly compared

1 Deaton and Irish (1984), Kay, Keen, and Morris (1984), Keen (1986), and Blundell and Meghir (1987)
use models based on the discrepancy between observed expenditure and actual consumption. We (and the 
other papers discussed here) concentrate on actual purchases.

3
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to maximum likelihood (ML) in estimating a system of tobit equations with normal errors and 

that this inefficiency does not decrease with sample size.2 Moreover, they find that the ML and 

the two-stage approaches perform poorly when the errors are not normal.

If the errors are normal (or another known distribution), greater efficiency can be 

achieved by using full-information ML techniques. Using ML techniques, however, is feasible 

only for systems consisting of a relatively small number of goods, say three.3

Wales and Woodland (1983) use ML techniques to estimate a demand system with 

nonnegativity constraints based on a random quadratic utility function for three goods (beef, 

lamb, and other meats) based on Australian data.4 Because they observe no variation in prices, 

they estimate only the variation in demand due to differences in demographic characteristics.

Ransom (1987) examined the relationship between the Wales and Woodland method and 

the Amemiya approach to estimating simultaneous tobits. He showed that the internal 

consistency condition for the Wales and Woodland model is equivalent to the second-order 

condition for systems of demand equations without binding quantity constraints. If prices are 

constant, Wales and Woodland’s method and the simultaneous system with limited dependent 

variables of Amemiya are identical. If prices vary, the error terms are heteroscedastic.

Our objective is to recover the unknown parameters of a censored demand system with 

many goods where we make no distribution assumption and where the exogenous variables may 

be correlated. Our approach has its roots in information theory and builds on the entropy- 

information measure of Shannon (1948), the classical maximum entropy (ME) principle of Jaynes

2 Their experiments suggest, however, that the Nelson and Olsen two-stage estimator (which does not 
drop the constrained observations) performs reasonably well compared to ML. In contrast, Lee (1978) 
shows that, for a system of equations, the Amemiya two-stage estimator is more efficient than the Nelson 
and Olsen or Heckman two-stage estimators when the normality hypothesis is maintained.

3 It may be possible to estimate larger systems using a general method of moments estimator, however, this 
approach has not be used in a demand study.

4 Lee and Pitt (1986) propose using the dual of Wales and Woodland’s method to transform binding 
nonnegativity constraints into nonbinding constraints based on virtual (shadow) prices. They estimate a three- 
input energy demand system using a translog cost function.

4
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(1957a, 1957b), which was developed to recover information from underdetermined systems, and 

the generalized maximum entropy (GME) theory of Golan, Judge, and Miller (1996).

The GME method allows us to consistently and efficiently estimate a demand system 

with nonnegativity constraints and a large number of goods without imposing restrictions on the 

error process. The GME estimates are robust even if errors are not normal.

In this paper, we use our GME approach to estimate an Almost Ideal Demand System 

(AIDS), but our method could be applied to any demand system. In our empirical application, we 

concentrate on estimating the elasticities of demand and examining how these elasticities vary 

with demographic characteristics of households.

2.2 AIDS Model

The Almost Ideal Demand System (AIDS) is a flexible, complete demand system: It 

satisfies the adding up of budget shares, homogeneity, and symmetry. Throughout most of the 

paper, we assume that meat and all other goods are separable in the utility functions and estimate 

a five-equation system of demand for meats only.3 We briefly discuss our complete, six-equation 

demand system estimates.

The AIDS consists of a set of budget-share equations:

*  = « ,+  £  r u ln p .  + f t l n ^ P ) ,  ( 1)
/

where s; (> 0) is the budget share of meat product i, p, is the price of product /, E is the 

total expenditure on meats, P is a price index, and a;, yy, and Pi are constant parameters. We

5 Alston and Chalfant (1987) contrast using expenditure or total income to estimate a separable meat demand 
systems using Australian data. Based on non-nested tests, they favored using expenditure. Their results are 
mixed on whether separability holds. Moschini, Moro, and Green (1994) find support for separability between 
meat and other foods in a Rotterdam model.

5
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allow the intercept terms to vary with a matrix X  of K exogenous demographic and geographic 

variables, where

= I  P A  (2)t=o

and the pik are constant parameters. Consumer theory requires that the equations satisfy 

adding up, symmetry, and homogeneity constraints:

Yij =  7 ji.

Sj a#) = 1,

Sj pik = 0 for k = 1,.... K, and

S i P i  =  0 ,

S j  Yij =  0 .

The nonlinear price index is

l n P = 0 + 2 o r ,  l n p l + ^  2  2  y ,  ,  ln p >  p i . (3)
,=/ 2 j=i

Although we use the nonlinear price index, a common practice is to replace the nonlinear 

price index, Equation 3, with Stone’s linear approximation:6

In P* = 2  Si In Pi. (4)
i = /

We follow the standard practice of adding an error term, Eit to each budget-share 

equation. Thus, the model we estimate is

Si= 1  PikXk+t  Yi j In Pi + Pi\n(E/P)+ei , forSi>0 (5)
* = /  i = /

6 In our sample, there is little difference between using the exact, nonlinear price index and the linear 
approximation.
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K n
S i  > I  p ik X k + I  Y, J  In P, + p , \n(E/P)+e, , forSj =0 (6)

2.3 Estimation Approach

To estimate this system of censored demand equations, we generalize the GME method 

for estimating a single, censored equation in Golan, Judge, and Perloff (1997). We start by 

providing some intuition as to how the maximum entropy approach works. Then, we show how 

to estimate the AIDS using GME. The appendix discusses the properties of this estimator and 

derives the asymptotic variance matrix.

2.3,1 Maximum Entropy

The traditional maximum entropy (ME) formulation is based on the entropy-information 

measure of Shannon (1948). It is developed and described in Jaynes (1957a, 1957b), Kullback 

(1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling (1989), Csiszar (1991), 

and Golan, Judge, and Miller (1996). Shannon's (1948) entropy is used to measure the 

uncertainty (state of knowledge) we have about the occurrence of a collection of events. Letting 

x  be a random variable with possible outcomes x„ s = 1, 2,. . . ,  n, with probabilities 5, such that D, 

5, = 1, Shannon (1948) defined the entropy of the distribution 8 = (8j, 83,..., 8„)', as

where 0 In 0 = 0. The function H, reaches a maximum of ln(n) when S1 = 82 = ... = 8„ = 

1/n. It is zero when 8, = 1 for one value of s. To recover the unknown probabilities 8 that 

characterize a given data set, Jaynes (1957a, 1957b) proposed maximizing entropy, subject to 

available sample-moment information and adding up constraints on the probabilities.

(7)

7

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

This procedure has an intuitive appeal. Suppose we have a sample of T draws of an 

identically and independently distributed random variable x that can take n values, j r t , x2, .... x„, 

with probabilities 5|, 5:, 5 „ .  Because the draws are independent, a list of the number of times 

each value occurs contains all of the information this experiment provides about the random 

variable (i. e., the order contains no information about the probabilities). We define the outcome 

of the experiment as a vector/=  (fufi, ...,/n), where/j is the number of times x, occurs and I , / ,  = 

T. A particular outcome may be obtained in a number of ways. For example, the outcome (1, T- 

1, 0 ,0 ,.... 0) can occur in T  possible ways because x\ may be observed in any of the T draws. In 

contrast, the outcome (T, 0 ,0  ...0) can occur in only one way, where x\ was drawn each time.

Define v(/) as the number of ways that a particular outcome can occur. Suppose we have 

no information about the draws and are asked which outcome is the most likely. An "intuitively 

reasonable" response is that the outcome that can occur in the most number of ways,J* = argmax 

v(J), is the most likely outcome. Equivalently, we would consider it more likely to observe the 

frequency f* /T  than any other frequency. Shannon shows that, in the limit as T -» » ,  choosing/ 

to maximize v(f) is equivalent to choosing 5 to maximize the entropy measure, //(S).

That is, the frequency that maximizes entropy is an intuitively reasonable estimate of the 

true distribution when we lack any other information. If we have information from the 

experiment, such as the sample moments, or non-sample information about the random variable, 

such as restrictions from economic theory, we want to alter our "intuitively reasonable" estimate. 

The ME method chooses the distribution that maximizes entropy, subject to the sample and non

sample information. That is, out of all the possible estimates or probability distributions that are 

consistent with the sample and nonsample data, the ME method picks the one that is most 

uninformed: closest to a uniform distribution. In this sense, the ME estimator is conservative.

8
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2.3.2 Estimating an AIDS Model using GME

In the traditional maximum entropy (ME) approach, sample information in the form of 

moment conditions is assumed to hold exactly. In contrast, the generalized maximum entropy 

approach (Golan, Judge, and Miller, 1996) allows these conditions to hold only approximately by 

treating them as stochastic restrictions.

Further, the GME uses a flexible, dual-loss objective function: a weighted average of the 

entropy of the systematic part of the model and the entropy from the error terms. The ME is a 

special case of the GME where no weight is placed on the entropy of the error terms and where 

the data are exact moments. By varying the weight in the GME objective, we can improve either 

our precision or predictions. Here, we use a balanced approach where we give equal weight to 

both objectives.7

To write these two entropy measures, we need to express all the coefficients and errors in 

Equations 4, 5, and 6 in terms of proper probabilities. To transform yi,, we start by choosing a set 

of discrete points, called the support space, Z \ =  [Zji, zsz, . . . ,  Zjd] of dimension D >  2, that are at 

uniform intervals, symmetric around zero, and span the interval [-a, a]. We then introduce a 

vector of corresponding unknown weights = [qiit q, 2, —, qp] such that £d q ^  = 1 and £d zjd qld = 

Yu for all i and j. For example, if D = 3, then Zj = (-a, 0, a)’, and there exists q^, qp, and q$ such 

that each yy = -aq}\ + aqj3. We index the number of discrete points (dimensions) in the support 

space for each unknown coefficient with d = 1, 2,..., D. Each support space and the associated 

probability distribution can be of different dimension. We use the same approach for the fi, p, and 

0  coefficients.

7 In our empirical application, the results are not very sensitive to the weight. Indeed, raising the weight from 
05 to 0.9 on the systematic measure causes the estimated coefficients and the correlation between actual and
estimated values to changes by less than 1%.

9
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We treat the errors eit as unknowns and define a transformation matrix V that converts the 

possible outcomes for ejt to the interval [0, 1]. This transformation is done by defining a set of H

> 2 discrete points y_= [vh v2 vH] \  distributed evenly and uniformly about zero, and a

corresponding vector of unknown weights w = [wj,i, wit2, WjtH]' such that l h vhwith = eit. No 

subjective information on the distribution of probabilities is assumed. Substituting these 

reparameterized terms into the AIDS Equations 5 and 6, we obtain:

The GME estimator maximizes the joint entropy for the signal (p, y, p, <{>) and the noise 

(e), subject to the data, the linear price index Equation 4, and the adding up (of the probabilities), 

homogeneity, and symmetry conditions.

Letting q = (qp, qr, qf, q*)’, the GME estimator is

subject to budget-share Equations 8 and 9, the linear price index Equation 4, the GME adding-up 

conditions,

(8)

(9)

M a x H -  - q' Inq-w Inw , ( 10)

(11)

and the consumer-theory restrictions

10
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The solution to this maximization problem is unique. Forming the Lagrangean and 

solving for the first-order conditions yields the optimal solution q and w, from which we derive 

the point estimates for the AIDS coefficients:

Y i j  X  Z Yi j d  R i j ( i  •
r f =/

(16)

(19)

(17)

(18)

H

£ i  W i t h •

h a  I

(20)

That this GME estimator is consistent follows immediately by extending the proof in 

Golan, Judge, and Perloff (1997) that a censored GME estimator for a single equation is 

consistent (see the Appendix). The GME has several other desirable properties (see Golan, 

Judge, and Perloff 1997 and Golan, Judge, and Miller 1996). The GME approach uses ail the 

data points and does not require restrictive moment or distributional error assumptions. Thus, 

unlike the ML estimator, the GME is robust for a general class of error distributions. Further, the 

GME estimator performs well in both well-posed and ill-posed problems. Thus, the GME

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11



www.manaraa.com

estimator may be used when the sample is small, there are many covariates, and when the 

covariates are highly correlated. Moreover, using the GME method, it is easy to impose 

nonlinear constraints, such as those in the nonlinear price index (Equation 3).

Most important for demand system estimation, the GME produces efficient estimates of a 

system of many censored equations. Using ML methods, one is practically restricted to 

estimating only a few equations or using relatively inefficient two-stage methods. The sampling 

experiments of Golan, Judge, and Perloff (1997) indicate that the balanced single-equation GME 

estimator is more efficient — has lower empirical mean square error — than the ML tobit 

estimator in small samples. These results hold even when the true underlying error distribution is 

normal, as is assumed in the tobit estimator. These experiments indicate that the GME is even 

more efficient relative to the ML when the error term is not normal.

2.4 Data

We use data from a cross-sectional Mexico household survey conducted by the National 

Institute of Statistics, Geography and Informatics (INEGI), an agency of the Ministry of 

Budgeting and Programming in Mexico, in the last quarter of 1992, which was provided by the 

World Bank. A stratified and multi-stage sampling method was used to produce a representative 

sample for the entire population and for urban and rural households. The data cover 31 states and 

one Federal District.

The data base has detailed information about consumption during a one-week survey 

period and demographic characteristics by household. The survey recorded 581,027 observations 

of purchasing events by about 10,500 households.8 At least 205 types of foods are separately 

reported.

1 Own produced and consumed goods are included in quantity measures.

12
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We examine the quantities purchased for five aggregates of meat products: beef, pork, 

chicken, processed meat, and fish. The corresponding prices are also aggregates. For example, 

the price of beef is an expenditure weighted average of beef steak, pulp, bone, fillet, special cuts, 

and ribs and other.

The pricbuy pork; 35%, chicken; 57%, processed meat; and 87%, fish. Because prices 

are only reported if purchases are made, we need measures of the prices for households that did 

not make purchases. We assume that those household face the average price level for that 

product in that particular geographic location: a rural or urban area in a particular state or Federal 

District.

We experimented with various sample sizes and found that our estimates were not very 

sensitive to sample size. In the following, our estimates are based on a random sample of 1,000 

observations. Table 2-1 shows that the means and standard deviations of our 1,000 observations 

are virtually the same as for all 7,897 households. Table 2-1 also provides summary statistics for 

the consumption shares of the five meats, the corresponding prices, expenditures on meats, and 

the 12 demographic variables we use in our GME LA/AIDS Model.

2.5 Estimation

We obtained our GME estimates by maximizing the joint-entropy objective, Equation 10, 

which depends on Equations 8 and 9, subject to the nonlinear price index. Equation 3, the GME 

adding-up restrictions, Equation 11, and the consumer-theory restrictions, Equations 12-15.

We set our support vectors z1 (/ = p, y, P, <J>) wide enough to include all the possible 

outcomes. The natural support vector for the error term is v = (-1,0,1), because all the dependent 

variables are shares that lie between 0 and 1. In a variety of AIDS empirical studies [Heien and 

Pompelli (1988), Moschini and Meilke (1989), Heien and Wessells (1990), Chalfant et al. (1991) 

and Halbrendt et al. (1994)], we found that the estimated coefficients on log prices were within
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the interval of (-0.2, 0.2) and the intercepts and coefficients on log expenditures were within the 

interval of (-1, 1). We chose support vectors that are 100 times wider than these intervals: (-20, 

20) for the log price coefficients and (-100, 100) for the intercept and tog expenditure 

coefficients. Making a moderately large change in these support vectors, while keeping the 

center of the support unchanged, has negligible effects on the estimated coefficients and elastici

ties.

The model was estimated using GAMS (Generalized Algebraic Modeling System), which 

is a nonlinear-optimization program.9 Table 2-2 shows our GME estimates of the LA/AIDS 

demand system. The asymptotic standard errors are calculated using the second method 

described in the Appendix.

We tested for symmetry and homogeneity. The objective value with both symmetry and 

homogeneity imposed is 630.1404. The corresponding objective value without symmetry is 

630.4464, and the one without homogeneity is 630.1422. Thus, on the basis of log-likelihood 

tests, we fail to reject both of the hypotheses at the 5% significance level.

2.5.1 Prediction

We can contrast a measure of the predictive power of these estimates to those from the 

two-step method of Heien and Wessells (1990). Table 2-3 shows the correlation between 

observed and predicted shares for various estimators including both the nonlinear AIDS model 

(using Equation 3) and the linear AIDS approximation (Equation 4). Given that the estimates are 

based on a cross-section of households (with measurement errors in the price data), the 

correlations for all three estimators are surprisingly high.

9 We are very grateful to Michael Ferris and GAMS Corporation for helping us in convert our primal 
nonlinear maximization problem to a dual one, thereby substantially decreasing computation time. This 
method is described in Dirkse and Ferris (1995), Ferris and Munson (1997), and Ferris and Horn (1998).
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Except for fish, the predicted shares of the Heien-Wesselis two-step estimator are more 

highly correlated with the actual data than those obtained using single-equation tobit estimates. 

Apparently the information from the cross-equation restrictions in the two-step estimator more 

than compensate for the greater efficiency of the tobit ML approach for a single equation.

The GME predicted shares are more highly correlated with the actual data than are the 

two-step estimator for the entire system and for each type of meat (with two exceptions). 

Surprisingly, the linear approximation method predicts better than does the nonlinear model for 

the Heien-Wessells method (though not for the GME method).

2.5.2 Elasticities and Confidence Intervals

Table 2-4 reports the Hicks-compensated price elasticities and expenditure elasticities for 

each type of meat and corresponding asymptotic standard errors.10 All the own-elasticities have 

the expected signs. Most of the elasticities are statistically significantly different from zero at the 

0.05 level on the basis of asymptotic t-tests.

2.5.3 Complete Demand System

We also estimated a "complete" AIDS model with the five meats and "all other goods." 

The consumption of "all other goods" was calculated by using households’ income data and 

normalizing the price of all other goods to one. The complete, six-equation demand system uses 

income, whereas the meat-only, five-equation demand system uses expenditures on meat.

Table 2-5 shows the correlation between actual and estimated shares in the meat-only and 

the complete demand systems based on 500 observations. The correlation is much higher for each 

meat except fish in the complete system.

10 To save space, we do not report the Marshallian price elasticities, though the own elasticities are reported 
in Table 6.
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We obtain income elasticities with the complete model rather than the expenditure 

elasticities with the meats-only model. We see no obvious pattern between the two models in the 

expenditure and the income elasticities. The Hicksian price elasticities for the two models (not 

reported in the table) are close. The Marshallian meat demand elasticities are also close except 

for fish, where the complete system estimate is five times as large in absolute value due to the 

large difference between the expenditure and income elasticities.

2.5.4 Comparison with Other Estimates

We can find no other estimates of meat-demand price elasticities for Mexico.11 Nor have 

we found meat demand studies for other countries that us cross-sectional data.12 Table 2-6 

compares our estimated Marshallian own-price elasticities to time-series studies of meat demand 

in wealthier countries.

Our estimated Marshallian demand elasticity for processed meat is -0.78. None of the 

other studies calculate an elasticity for this meat. The estimated Marshallian elasticities for 

Mexican beef and chicken lie at the high-end and the pork elasticity at the low-end of the ranges 

over other countries. The Mexican fish elasticity is much more elastic than the few other existing 

estimates in other countries.

11 Heien, Jarvis, and Peraii (1989) examine a nine-commodity food demand system (including meat) for 
Mexico. They also examine poultry, pork, and beef in more detail. As they lack price variation data, however, 
they cannot estimate elasticities. They describe their estimates as a demographically augmented Engel curve 
analysis.

12 Deaton (1988) uses cross-sectional data to estimate price elasticities for beef, other meat, cereal, and
starches for the Ivory Coast. He does not, however, break down the other meat category in further detail.
Wales and Woodland’s (1983) study of meat demand using cross-sectional Australian data shows only how 
demand varies with demographic characteristics. As with Heien, Jarvis, and Peraii (1989), Wales and
Woodland could not estimate price effects because they did not observe variations in price.
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2.5.5 Demographic Effects

Because our demand system uses demographic variables as well as prices to explain 

demand, we can examine how changes in various demographic characteristics affect the price and 

expenditure elasticities. Table 2-7 shows how the share of meat expenditures responds as we 

change one demographic variable at a time, while holding other demographic variables at the 

sample means.

The top of the table shows the effect of changing each dummy variable from 0 to 1. The 

share of beef is 4.9 percentage points higher for a resident of an urban area than a comparable 

person who lives in a rural area. Urban dwellers also eat relatively more chicken and fish and 

less pork and processed meats. Female-headed households eat relatively less beef, pork, and 

chicken, and relatively more processed meats and fish. Households headed by someone with a 

college degree eat much more processed meats and much less pork than those headed by people 

who did not complete their elementary education.

The bottom part of the table shows the effect of changing a household’s age composition. 

If a family adds a child under the age of 5 to a family of five, the share of beef falls 1.4 

percentage points, the share of por4k falls by -2.4 percentage points, and the other shares change 

by smaller amounts. In general, changes in age composition have the largest effects for the two 

youngest and the oldest age groups.

2.6 Conclusions

Our generalized maximum entropy (GME) approach is a practical way to estimate 

systems of many equations with nonnegativity constraints. The GME approach has several 

advantages over traditional maximum likelihood (ML) methods.
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First, because no assumptions about the error structure need be made to use the GME 

estimator and because it uses all the data, it is more robust and efficient than are ML estimators. 

The sampling experiments of Golan, Judge, and Perloff (1997) indicate that the balanced single

equation GME estimator is more efficient — has lower empirical mean square error — than the 

ML tobit estimator in small samples regardless of whether errors are normal or not. In particular, 

the predictive power of the GME estimator is greater than that of two-stage estimators or single

equation maximum likelihood estimators for the data set we examined.

Second, imposing inequality (nonnegativity) constraints, equality (various consumer 

theory) constraints, and nonlinear constraints is straight forward. In general, theoretical and other 

nonsample information may be directly imposed on the GME estimates much more easily than 

with classical ML or Bayesian techniques.

Third, GME performs well in both well-posed and ill-posed problems. Fourth, the GME 

objective can be adjusted to stress either precision or prediction. Fifth, the GME approach can be 

used with a larger number of censored equations than is practical to estimate with standard full- 

information maximum likelihood approaches. Finally, the GME is a one-stage procedure that is 

easy to compute and solve.

We use our GME method to estimate the demand for five types of meat using cross- 

sectional data from Mexico, where most households did not buy at least one type of meat during 

the survey week. Our estimates of the Marshallian elasticities of demand for Mexico are similar 

to estimates based on aggregate, time-series data from other, wealthier countries except for fish, 

where Mexican demand is more elastic. We believe that this study is the first to show how a 

system of demands varies across demographic groups.
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2.7 Appendix: Properties of the Generalized 

Maximum Entropy Estimator

Given four mild conditions, our GME estimator is consistent and asymptotically normal. 

These conditions are that (i) the errors’ support y is symmetric, (ii) zs spans the true values for 

each one of the unknown parameters [J = (p, y, P, (J>)], (iii) the errors are independently and 

identically distributed, and (iv) the operator X is of full rank. The proofs of consistency and 

asymptotic normality follow immediately from those in Golan, Judge, and Miller (1996), Golan, 

Judge, and Perloff (1997), and Mittelhammer and Cardell (1996).13 These asymptotic properties 

can also be established via the empirical likelihood approach (Owen, 1990, and Qin and Lawless, 

1994, Golan and Judge, 1996).

On the basis of these results, the entropy ratio statistic for the different parameters of the 

unknown distribution generating the data have a limiting x2 distribution and are used to obtain 

confidence intervals. Let X = (X, X,..., X, k)’ be the vector of Lagrange multipliers for the 2n share 

equations where X and X stand for the n multipliers associated with the equality and inequality 

constraints (for each good i = 1, 2,..., n) respectively. Let Ha() be the objective (total entropy) 

value for the complete AIDS-GME model where none o f the parameters 8 = (£, y, g, (j>)’ are 

constrained, or similarly, none of the elements of X are constrained. Thus, //„() is just the optimal 

value of Equation (10). Next, let / /M(Ao) he the entropy value of the constrained problem where X 

= 0, or equivalently all the parameters are constrained to be zero (or at the center of their 

supports). Thus, Hm(Xq) is the maximum value of the joint entropies (objective function). It can 

be obtained by maximizing Equation (10) subject to no constraints (except for the requirements

13 Note that asymptotic normality is not affected by nonlinear price equation as the proof is based on the 
assumptions on the errors and the support spaces and thus the unknown Lagrange parameters are not affected at 
the limit.
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that all distributions are proper). Doing so yields the total entropy value of the two discrete, 

uniform distributions q and w,

HmQs) = K ln(D) + nT \n(H) 

where K is the total number of parameters to be estimated, D is the dimension of the 

support space for each one of the K parameters (taken here to be the same for all k = 1 , 2 to 

simplify exposition), n is the number of data equations, and T is the total number of observations. 

Then, the entropy ratio statistic for testing the null hypothesis that H0: 8 = 0 is

£ ( S = 0 ) = 2 h m ( S = 0 ) . 2 H u(1 ) -

Under the four mild assumptions we made above (or the assumptions of Owen, 1990 and 

Qin and Lawless, 1994), = 0) —> %*K) as T  —»°° when Ho is true. The approximate a-level

confidence intervals for 5 are obtained by setting C(^.)-Ca  ̂ where C„ is chosen so that 

Pr <Coj= Similarly, we can test any other hypothesis H0: 5 = 8o for all, or any subset, 

of the parameters.

For example, let 2n be the number of symmetry requirements on y (Equation IS), then 

H0, Xij = 2ij. The entropy ratio statistic is

C ( Y i j  =  Y j l ) = 2 H u( Y i i * Y ] < ) - 2 H u ( Y i j  =  Y j i )  .

where we use the symbol 'V ' to indicate that the restrictions are not imposed. If H0 is true,

C ( Y i j  =  Y i i ) - > Z « „ ) a s r - > « .

We use the same line of reasoning as above (each constraint, or data point, represents 

additional potential information that may lower the value of the objective function but can never 

increase it) to derive a "goodness of fit" measure for our estimator:

, Hu d )
Hm(A = Q) '
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where ft* = 0 implies no informational value of the data set, and ft* = 1 implies perfect 

certainty or perfect in-sample prediction.

The small-sample approximated variances can be computed in a number of ways. We 

discuss two approaches here. For simplicity, we discuss the results for a single equation. The 

first method, is to calculate

where £,, = £v>, w,,h and var(<yik) = <5f(X 'X )‘‘ for each parameter dk of 6 = (a,i[L4>)'-
h

Because our model is a system of five equations, the elements of the asymptotic variance- 

covariance matrix, Cl, for the error terms of the entire system are

i i

where i, j  = 1,..., 5 (for the five meats). Thus, the variance matrix of the GME estimated 

parameters is

C -C (ftC fty 'C

where C =(Q,f f lG)*1, ft is a matrix showing the linear restrictions imposed ont he 

parameters (such as homogeneity and symmetry), and Q is the kronecker product of X and a 5 x 5 

identity matrix.

A second approach for estimating a makes use of the symmetry of the errors’ support v 

around zero (see for example, Mittelhammer and Cardell, 1996 for the linear regression model). 

Given the symmetry of v and , th e ’s are also identically and independently distributed with a

mean of zero. Then, o is the ratio of ) and the expected inverse of the variance of the
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estimated probabilities vv„ defined over y. Specifically, let aU  X i ) = — X X u  f°r Q js  20’ and
2T t

be the variance of the distribution vv„ over the support y. Then,

~ 2 _

(E [<Tu <wit)}1)

and var( £ jk ) = f f^ (X 'X f . As a practical matter, the differences among the two approaches is

negligible, but the second may be slightly preferred for very small samples, while the first 

approach is much simpler.
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Table 2-1 Summary Statistics

All 7,897 
Observations

Random Sample of 
1,000 

Observations

Mean SD Mean SD

Expenditure Share of Beef Consumption 0.388 0.342 0.369 0.335

Expenditure Share of Pork Consumption 0.123 0.237 0.127 0.245

Expenditure Share of Chicken Consumption 0.301 0.322 0.318 0.328

Expenditure Share of Processed Consumption 0.142 0.247 0.136 0.235

Expenditure Share of Fish Consumption 0.046 0.143 0.049 0.150

Natural Log of Price of Beef 9.552 0.272 9.544 0.278

Natural Log of Price of Pork 9.433 0.236 9.432 0.227

Natural Log of Price of Chicken 8.947 0.305 8.952 0.304

Natural Log of Price of Processed Meat 9.484 0.297 9.483 0.295

Natural Log of Price of Fish 9.365 0.467 9.352 0.459

Natural Log of Expenditure on Meats 16.025 0.891 16.030 0.871

Household Lives in Urban Area 0.622 0.485 0.611 0.488

Household Head is Female 0.128 0.334 0.120 0.325

Household Head is in School 0.021 0.142 0.025 0.156

Household Head Attended:

Primary School 0.516 0.500 0.548 0.498

Secondary School 0.176 0.381 0.173 0.378

Preparatory or Vocational School 0.078 0.268 0.068 0.252

College 0.095 0.294 0.082 0.275

Share of Household Members

Between 0 and S Years Old 0.139 0.170 0.141 0.173

Between 6 and IS 0.212 0.209 0.222 0.214

Between 16 and 28 0.257 0.247 0.260 0.244

Between 29 and 45 0.206 0.204 0.199 0.194

Between 46 and 60 0.104 0.196 0.106 0.185
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Table 2- i  GME Estimates of LA/AIDS Meat Demand System

Beef Pork Chicken
Processed

Meat Fish

Intercept -0.8330* -0.0435 1.2382* 0.7290* -0.0907

Beef Price -0.1348* -0.0019 0.0728* 0.0372 0.0267

Pork Price -0.0019 0.0537 -0.0123 -0.0110 -0.0285*

Chicken Price 0.0728* -0.0123 0.0128 -0.0674* -0.0059

Processed Meat Price 0.0372 -0.0110 -0.0674* -0.0241 0.0653*

Fish Price 0.0267 -0.0285* -0.0059 0.0653* -0.0576*

Expenditure 0.1126* 0.0190 -0.0812* -0.0625* 0.0121*

Household is Urban 0.0487* -0.0453* 0.0038 -0.0203 0.0131

Household Head is Female -0.0250 -0.0116 -0.0177 0.0837* -0.0294*

Household Head is in School -0.0455 -0.0397 0.1016 -0.0560 0.0397

Household Head Attended:

Primary 0.0388 -0.0577 0.0109 0.0206 -0.0126

Secondary School 0.0059 -0.0820* -0.0259 0.1043* -0.0024

Preparatory or Vocational 
School

0.0452 -0.1120* 0.0055 0.0793* -0.0181

College 0.0005 -0.1075* -0.0488 0.1577* -0.0018

Share of Household Members

Between 0 and S Years Old -0.2546* -0.0077 0.1801* 0.0733 0.0089

Between 6 and IS -0.1572* 0.0177 0.0899 0.0661 -0.0165

Between 16 and 28 -0.0437 0.1403 -0.0861 0.0246 -0.0351

Between 29 and 45 -0.0886 0.0132 -0.0222 0.1189* -0.0212

Between 46 and 60 -0.0984 -0.0138 0.0290 0.0757 0.0075

4> -4.3838

* The |asymptotic t-statistic| > 1.96 (5% confidence level). 
Note: Sample size is 1,000 observations.
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Table 2-3 Correlations between Observed and Predicted Shares

GME
2-Step Estimator 

Heien and Wessells 
(1989)

Least
Squares*

Nonlinear Linear Nonlinear Linear Nonlinear

Beef 0.347 0.339 0.273 0.263 0.214

Pork 0.198 0.199 0.200 0.194 0.193

Chicken 0.286 0.282 0.209 0.202 0.172

Processed Meat 0.261 0.260 0.230 0.308 0.219

Fish 0.163 0.160 0.127 0.158 0.028

Entire Demand 
System

0.489 0.487 0.315 0.468 0.245

* Nonlinear least squares of the AIDS model: Nonnegativity constraint is ignored. 
Note: Sample size is 1,000 observations.
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Table 2-4 Estimated Hicks Price and Expenditure Elasticities
(Asymptotic Standard Error)

Beef Pork Chicken Processed Meat Fish

Beef Price -0.596 0.187 0.228 0.015 0.166
(0.138) (0.068) (0.077) (0.064) (0.041)

Pork Price 0.550 -0.418 0.081 -0.059 -0.153
(0.365) (0.255) (0.196) (0.150) (0.113)

Chicken Price 0.263 0.034 -0.402 0.111 -0.006
(0.130) (0.073) (0.104) (0.064) (0.043)

Processed Meat Price 0.041 -0.052 0.255 -0.706 0.462
(0.316) (0.163) (0.176) (0.168) (0.093)

Fish Price 1.236 -0.400 -0.034 1.285 -2.088
(1.132) (0.436) (0.725) (0.330) (0.280)

Expenditure 1.305 1.149 0.745 0.542 1.247
(0.037) (0.082) (0.043) (0.072) (0.130)

Note-. The elasticities are calculated at the sample means.
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Table 2-5 Comparisons of Meat-Only and Complete Demand Systems

Elasticities

Correlation Expenditure Income

Meat Only Complete Meat Only Complete

Beef 0.305 0.580 1.131 0.420

Pork 0.228 0.391 1.218 0.794

Chicken 0.255 0.498 0.952 1.115

Processed Meat 0.334 0.559 0.303 0.358

Fish 0.250 0.176 2.013 -0.008

Other Goods N/A 0.910 N/A 1.045

System 0.484 0.991

Note: The estimates for both linear models are based on a sample of 500 observations.
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Table 2-6 Estimated Marshallian Own-Price Elasticities in Other Studies

Period Country Beef Pork Chicken Fish

GME Model* 1992 Mexico -1.078 -0.564 -0.638 -2.149

Cashin (1991) 1960-90 Australia -1.24 -0.83 -0.47 NA

Chalfant, Gray, & White 
(1991)

1960-88 Canada -0.96 -0.73 -0.91 -0.20

Hayes, Wahl, & Williams 
(1990)

1965-86 Japan -1.89 -0.76 -0.59 -0.70

Capps(1994) 1960-88 S. Korea -0.939 -0.647 -0.470 NA

Capps(1994) 1968-91 Taiwan -1.158 -0.919 -0.278 NA

Chalfant (1987) 1947-87 U. S. -0.37 -0.67 -0.51 -0.23

Moschini & Meilke (1989) 1967-87 U.S. -1.05 -0.84 -0.10 -0.20

Thurman (1989) 1955-83 u. s. -0.11 -0.73 -0.41 NA

Dahlgran (1989) 1950-85 u. s. -0.66 -0.58 -0.60 NA

Notes:
• Only our GME study uses the nonlinear AIDS model, cross-sectional data, and imposes 

nonnegativity constraints. The other studies are maximum-likelihood, LA/AIDS models based on 
annual data unless otherwise stated.

• The asymptotic standard errors for the four GME elasticities shown are 0.114,0.237, 
0.124, and 0.234. The GME Marshallian elasticity for processed meat is -0.780 with an 
asymptotic standard error of 0.194.

• Cashin: Quarterly data. Elasticities are for 1985:4. Elasticities vary little over time. 
Lamb elasticity is -1.326.

• Chalfant et al.: Estimates of the AIDS model without concavity restriction imposed.
• Hayes et al.: Elasticity for Wagyu, Japanese domestic beef. Imported-beef elasticity is 

-0.46. Test that the domestic beef is a perfect substitute for the import beef is strongly rejected. 
Estimation period is not clear from the paper.

• Capps: Rotterdam Demand Model.
• Moschini-Meilke: Post-structural change, time-varying coefficients, based on quarterly

data.
• Thurman: Quad-log demand system. Estimated price elasticities are for 1983 

observations, with symmetry restriction imposed.
• Dahlgran: Rotterdam Demand Model.
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Table 2-7 Percentage Point Change in Share Due to a Change in an Exogenous 
Variable

Processed
Beef Pork Chicken Meats Fish

Change from Oto 1

Urban 4.9 -4.5 0.4 -2.0 1.3

Female -2.5 -1.2 -1.8 8.4 -2.9

Household Head is in School -4.6 -4.0 10.2 -5.6 4.0

Primary 3.9 -5.8 1.1 2.1 -1.3

Secondary 0.6 -8.2 -2.6 10.4 -0.2

Preparatory 4.5 -11.2 0.6 7.9 -1.8

College 0.1 -10.8 -4.9 15.8 -0.2

Increase o f I Person

Age <5 1.4 -2.4 -0.6 1.3 0.3

5 > Age < 15 -2.8 -0.7 3.1 -0.1 0.4

15 > Age < 28 -1.2 -0.3 1.7 -0.2 0.01

28 > Age < 45 0.7 1.7 -1.2 -0.9 -0.3

45 > Age < 60 -0.04 -0.4 -0.2 0.7 -0.07

Age >60 1.4 -0.6 0.2 -1.3 0.3

' The typical family has five people. Initially, the family consists of one child less than 5 years 
old, one child between 5 and 15, two adults between 28 and 45, and one grandparent between 45 
and 60 years old. We then calculate the change in shares resulting from adding one more person 
in one age group.
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Chapter 3 Better Estimates of Agricultural 

Supply Response

3.1 Introduction

We propose a new, generalized maximum entropy (Golan, Judge, and Miller, 1996) 

approach to estimating the Nerlove model of agricultural supply response (Nerlove and Addison, 

1958, Nerlove, 1979). We use simulations to show that two versions of the generalized 

maximum entropy estimator and two other shrinkage estimators with informative priors have 

much smaller mean square errors (MSE) and average bias than do the standard techniques used to 

estimate the Nerlove model. We also use one version of the GME approach to estimate structural 

parameters that cannot be estimated using standard methods.

The Nerlove model is one of the world’s most widely-used econometric models and is 

frequently employed in development studies. Most of the literally hundreds of applications that 

use ordinary least squares (OLS) or nonlinear least squares suffer from two problems. First, 

because these least squares approaches can only estimate the reduced-form model, many 

structural parameters are not estimated. Second, estimates of the key, supply-response parameter 

are extremely variable, as the survey by Askari and Cummings (1977) illustrates.

One reason for the variability in OLS estimates is that the key estimated coefficient is a 

ratio of random variables. Zellner (1978) showed that the OLS reduced-form estimate of this 

coefficient possesses infinite moments of all orders and may have a bimodal distribution. 

Diebold and Lamb (1997) demonstrate that Zellner’s minimum expected loss estimator (Zellner
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1978; Zellner and Park 1979) of the reduced-form equation based on an uninformative prior 

(MELO-U) has smaller mean square error (MSE) than does OLS.

We compare the OLS and MELO-U estimates to generalized maximum entropy estimates 

of both the structural (GME-S) and the reduced-form (GME-R) versions of the Nerlove model. 

We also examine a MELO estimator with informative priors (MELO-I) and Zellner’s (1996, 

1997) Bayesian method of moments estimators without and with informative priors (BMOM-U 

and BMOM-I). In our simulation experiments, the four shrinkage approaches — MELO-I, 

BMOM-I, GME-R, and GME-S produce estimates of the key slope parameter of the Nerlove 

model that have much smaller average bias and MSE than do OLS or MELO-U or BMOM-U. 

We illustrate that the superiority of the MELO-I, GME-S, and GME-R estimators is not very 

sensitive to the amount of prior information provided (the specified support of the parameters and 

the error).

One advantage of the two GME approaches over the classical and Bayesian methods is 

that GME do not require distributional assumptions. Further, the GME-S approach provides 

estimates of coefficients that are unobtainable from the reduced-form approaches.

In Section 2, we describe the OLS, MELO-U, and MELO-I estimators of the Nerlove 

agricultural supply model. We present our GME estimators in Section 3. In Section 4, we 

describe the simulation results. We examine how sensitive the shrinkage estimators are to the 

prior information in Section S. We draw conclusions in the final section.

3.2 The Agricultural Supply Model

The standard structural Nerlove model is14

14 To facilitate comparison with Diebold and Lamb (1997), we use their specification of the standard 
model. Indeed, the entire discussion in this section follows the first section of their paper closely.
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A  =  a o  +  a P li  +  Ui> (1)

p i = p I i+ y ( p .-i - p;.,), (2)

A  = A -/ + #  ( K - A . , ) , (3)

(4)

where A is the crop acreage under cultivation, A* is the desired acreage, P is the crop

According to Equation (1), the desired acreage is a function of the expected price, where 

a  > 0, the slope of the desired acreage (supply) curve, is the key parameter that we want to 

estimate. Eq. (2) is an adaptive-expectations linking P* to P. Muth (1960) shows that these 

adaptive expectations are rational if prices follow an integrated moving average process. Eq. (3) 

is a partial-adjustment mechanism relating A* to A, where j'and 0 are expected to be positive (and 

probably between zero and one).

The structural model, Eqs. (1) - (4) cannot be estimated by either OLS or MELO 

techniques because P" and A* are not observable. Instead, the reduced-form equation is 

estimated. This reduced-form specification is obtained by solving Eqs. (1) - (4) for acreage as a 

function of observable variables:

price, P® is the expected price, and do, a, 0, y, and 0 2u are parameters.

A  = bi + b2 Pt i+b3 A - i  + b4 A -2 + e,. (5)

where
bi -aoY&

b z - a y O

b3=(l -Y  ) + ( l - 0 )
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b< = - ( l - Y  ) ( l - 0 ) 

e, = 0 u t - [ 0 ( l - Y  )Ju, i-

3.2.1 Ordinary Least Squares

Traditionally, OLS (or nonlinear least squares) is used to estimate the reduced-form, Eq.

(S). Doing so may not be appropriate because of the potentially serially-correlated disturbance 

and lagged dependent regresors. As OLS is virtually the only approach actually used, we follow 

Diebold and Lamb (1997) and use the OLS approach as the "straw man" base case. As they note, 

OLS is appropriate if farmers adapt their expectations quickly (y  is close to one) so that the 

reduced-form disturbance is approximately white noise. Similarly, if the supply-response 

equation’s disturbance is approximately first-order autoregressive with parameter 1 - y, the 

reduced-form disturbance is also approximately white noise.

The OLS approach estimates the key parameter c? as a function of the reduced-form 

parameters:

where & = 1 -  bs° -  b°. As Zellner (1978, 1985,1986), Zellner and Park (1979), Zaman 

(1981), and Diebold and Lamb (1997) observe, ratios or reciprocals of random variables have 

Cauchy tails and hence no finite moments. In addition, the distributions of reciprocals or ratios 

may be multimodal as Zellner (1978) shows for the normal distribution and Lehmann and Popper 

Shaffer (1988) show for more general distributions. The nonexistence of moments and the 

multimodality may contribute to substantial variability in estimates of agricultural supply 

response. In none of our experiments, however, do we observe multimodality.
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3.2.2 Minimum Expected Loss Estimators

Zellner’s (1978) minimum-expected-loss (MELO) estimator minimizes posterior 

expected loss. It has finite first and second moments and finite risk with respect to generalized 

quadratic loss in small and large samples and is consistent, asymptotically efficient, and 

asymptotically normal. Because of these characteristics, Diebold and Lamb (1979) recommend 

using MELO-U instead of OLS to estimate a .13 The MELO-U shrinkage estimator is

mu_ E(b?)  l  + Cov jb r .S™1) ! ^ ^ ) ™ ™ ) }  
a  ~ E ( S mu) l + V a r ( J mu) / E 2( £ mu)

_ E < b r i  <7)
E(Sm)

where F™1 is the shrinkage factor and <T“ = I - b3mu - h™.

In the MELO-I approach, we use Geweke’s (1986) method to impose our priors

(inequality restrictions) and then base the MELO-I estimates on those Bayesian estimates.16 We

use informative priors about the parameters b = (bu b3, b3, and b4)' and the error term. All the 

prior restrictions are of the form that coefficients and the residuals lie in a specified range.

The MELO posterior conditional distribution of b given the data and o follows a 

multivariate normal distribution:

{bMELo\<r.X , A} ~MVN ((XX ? X ' A ,  ( XX f n a ) ,  (8)

13 See their article for details on this estimator. Diebold and Lamb also note that one could estimate a
reduced-form model with a lagged dependent variable and serially correlated errors using the method of
Zellner and Geisel (1970) or BMOM.

16 In most of our simulations, the initial Bayesian estimates and the MELO-I estimates differ only in the 
third or fourth place. Consequently, we discuss only the MELO-I except in the one case where the two 
estimates differ by more.
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where X  is a T x 4 (where T  is the number of observations) matrix of independent 

variables in the reduced-form regression, Equation S. The posterior distribution of o given the 

data follows an inverted gamma distribution

Pr( <J| X, A joe — 
a

1 ( v s 2 )
- “ V * <

(9)

where v = 7* - 4 is the degrees of freedom (given four regressors in the reduced-form 

Equation S) and s2 is the variance of the residuals.

To impose the inequality restrictions that coefficients lie within certain ranges, we use 

Geweke’s (1986) technique. The first step is to generate a large number of random samples of b 

and e using their known posterior distributions. We generate er using Equation 9. We then 

generate the vector b using Equation 8 conditional of those generated er. Finally, we compute a 

vector of the residuals as e = A - Xb. In the second step, we reject those observations for which 

either b or £ fail to satisfy the prior restrictions. The remaining observations represent a truncated 

posterior distribution of observations for b and that are consistent with the prior restrictions.

The MELO-I shrinkage estimator is

mi=E (b r )  l-t-Cov(br, S mi) / [ E ( b f )  E (Smi)] 
a  E(<ymi) l + VarGT^/E 2(Smi)

where 5m' = 1 - b3m- bf' .

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

3.2.3 Bayesian Method o f Moments Estimator

We also use Zellner’s (1996, 1997) Bayesian method of moments (BMOM) to obtain 

estimates of the reduced-form Nerlove model in our experiments. BMOM allows researchers to 

make inverse probability statements regarding a given set of data when they lack information 

about the forms of the likelihood function and the prior distribution. We can derive the proper 

maxent (maximum entropy) posterior distribution of BMOM estimates of b = (bu b2, b2, b*)' in 

the Nerlove model given <T and the data, which Zellner (1996) showed to be a multivariate 

normal density:

{bBMou I X . A }=  M V N  ( ( X X  f ’ X ' A . ( X X  f n a  ) .

Zellner also showed that the proper maxent posterior distribution for a2 is an exponential 

distribution with a mean equal to s2:

P r (<r2)= -7 exI** o 2 /  s 2 y■
s

To estimate a  using the BMOM-U method, we follow Zellner (1994) and use a balanced 

loss function (BLF). which minimizes the weighted average of the posterior prediction loss. Our 

BMOM-U estimate is

*■ _  Q 5  £(b?>) t 0  5 £(b?1} 1 *  Cov(b?* ’<ybU) ' [E (b?l} £(<*bU)1 (11)
a  ‘ E ( S ^ )  ’ E i S * )  1 + V a r ( S ba) /  e H S * )

where8bu= l - b 3bu-b 4b“.

We again use Geweke’s (1986) method to impose prior restrictions to obtain the truncated 

BMOM-I posterior distributions of b and e. The BMOM-I estimate of a  using a BLF is
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/.«. ^ ‘ ) . n ,  ^ (b i‘) I + co v (b l‘ , <ybi) / [£: (br) ) ]a  = 0 .5 ------— + 0.5 ------------------  —-;—  ----  , (12)
E ( s bl) E(S  ) l + V ^r(Jb,) / £ : (<Jb')

where &“ = 1 -  & /'-  bj".

3.3 A Generalized Maximum Entropy Approach

As an alternative, we use a GME approach to estimate both the structural and reduced- 

form agricultural supply models. We start by providing some intuition as to how the maximum 

entropy approach works, and then develop the GME estimator.

3.3.1 Maximum Entropy

The traditional maximum entropy (ME) formulation is based on the entropy-information 

measure of Shannon (1948). It is developed and described in Jaynes (1957a, 1957b), Kullback 

(1959), Levine (1980), Jaynes (1984), Shore and Johnson (1980), Skilling (1989), Csiszar (1991), 

and Golan, Judge, and Miller (1996). Shannon's (1948) entropy measure reflects the uncertainty 

(state of knowledge) we have about the occurrence of a collection of events. Letting jc be a 

random variable with possible outcomes jcs, s = 1, 2 n, with probabilities Ss such that

^ S s ln£ 5 , Shannon (1948) defined the entropy of the distribution S  = ( as
s

H ^ - l S s l n S s ,  (13)
S

where 0 in 0 = 0. The function H, reaches a maximum of ln(n) when S, = = . . .  = <5>, = lln. It

is zero when Ss= 1 for one value of s.
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To recover the unknown probabilities £that characterize a given data set, Jaynes (1957a, 

1957b) proposes maximizing entropy, subject to available sample-moment information and 

adding up constraints on the probabilities. This procedure has an intuitive appeal.

Suppose we have a sample of T draws of the identically and independently distributed 

random variable x. Because the draws are independent, a list of the number of times each value 

occurs contains all of the information this experiment provides about the random variable: The 

order contains no information about the probabilities. We define the outcome of the experiment 

as a vector/ = ...,/n), where/s is the number of times xs occurs and £ , f s = T  . A particular

outcome may be obtained in a number of ways. For example, the outcome (1, T-l. 0 ,0 ..... 0) can

occur in T possible ways because jc( may be observed in any of the T draws. In contrast, the 

outcome (T, 0 ,0  ...0) can occur in only one way, where x t is drawn each time.

Define v(f) as the number of ways that a particular outcome can occur. Suppose we have 

no information about the draws and are asked which outcome is the most likely. An "intuitively 

reasonable" response is that the outcome that can occur in the most number of ways,f* = argmax 

v(/), is the most likely outcome. Equivalently, we would consider it more likely to observe the 

frequency J*/T than any other frequency. Shannon (1948) shows that, in the limit as T —> <», 

choosing/to maximize v(/) is equivalent to choosing <5to maximize the entropy measure, H(S).

Thus, the frequency that maximizes entropy is an intuitively reasonable estimate of the 

true distribution when we lack any other information. If we have information from the 

experiment, such as the sample moments, or non-sample information about the random variable, 

such as restrictions from economic theory, we alter this intuitively reasonable estimate. The ME 

method chooses the distribution that maximizes entropy, subject to the sample and non-sample 

information. That is, out of all the possible estimates or probability distributions that are 

consistent with the sample and nonsample data, the ME method picks the one that is most 

uninformative: closest to a uniform distribution. In this sense, the ME estimator is conservative.
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3.3.2 GME Estimator

The GME objective is a dual-criterion function that depends on the weighted sum of the 

entropy measures from both the unknown and unobservable coefficients (cfo, a, y, 0) in the 

structural model or bu b2, b2, b4 in the reduced-form model) and the error terms («„ structural, or 

et, reduced form). By increasing the weight on the error component of entropy, we improve the 

accuracy of estimation (decrease the MSE of the estimates of the coefficients). By increasing the 

weight on the coefficient component of entropy, we improve prediction. The ME estimator is a 

special case of the GME, in which no weight is placed on the noise component. In the following, 

our GME objective weights the coefficient and error entropies equally because we lack any 

theory that suggests other weights.17

We start with a GME estimate of the reduced-form model, Eq. (5), which we call GME- 

R. We estimate bt, b2, b2, and b± to facilitate comparisons with previous papers. [Instead, we 

could estimate (<%, a. b2, and bt).

Because the arguments of the entropy measures must be probabilities (Golan, Judge, and 

Miller, 1996; Golan, Judge, and Perloff, 1997), we reparameterize the coefficients to be proper 

probability distributions that are defined over some support. For example, for each reduced-form 

coefficient, b„ we start by choosing a support space, which is a set of discrete points

Z = [ z| ,z 2 of dimension M> 2, that are at uniform intervals and that span the possible

range of the unknown coefficients. Where we do not have knowledge about the coefficients from 

economic theory, we specify the supports to be uniformly distributed symmetric about zero with 

"large" negative and positive bounds. For the distribution to be symmetric around zero, M must

17 We did, however, experiment with various weights ranging between zero and one. The mean square 
errors hardly vary as we change the weights in the following simulation experiments.
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be an odd number. In our simulations, we use M = 3 because we find little if any gain from using 

larger M such as 5 or 7.

Then we let

bi 2  Pm Zm > i — 1 , 4  ,
m= y

where the p  are probabilities that correspond to the M-dimensional support vectors of

M
weights with the property of probabilities that £  p m = 1 for«= 1 , 4 .

m=!

Similarly, we treat the errors as unknowns and use the following parametrization. Let 

each §x be specified as

e,=  2  wti vj ,
1=1

where £  wt l - l  for all r, and y is a support space of dimension J greater than or equal to two
i=i

that is symmetric about zero.

Having reparameterized the unknowns, we maximize the dual-loss (objective) function, 

which is the sum of the joint entropies of the signal and noise in the system. Letting p ’ = (pl\ p '\ 

B*\ P*) and w = (wt, .... vvT)’, our problem is

max H  = - p ’tn p ’- w ’ln w ’ (14)
p .w  —  —

subject to

m=/ m=/ m-1 m=l j-1
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M .

The GME-R coefficient estimates are £( = £  P m Z m  • Mittelhammer and Cardell (1997)
/

show that the GME estimates are consistent under standard regularity conditions for the 

generalized linear model. Thus, given our assumptions, the GME-R estimates are consistent.

The GME structural-model estimator (GME-S) is handled similarly (Golan, Judge, 

Miller, 1997). We need to reparameterize the coefficients of the structural model, Eqs. (l)-(3), in 

terms of probabilities. The probabilities 30 correspond to do, a“ to a , gY to y, gY to y, and to the 

error term Let 3’ = (30’, 3“’, aY\  3°’). The supports are defined analogously. We maximize the 

dual-loss objective function (the sum of the joint entropies of the signal and noise in the system),

max H — - flln 3’—nr'In nx’ (15)
<7.2{

subject to

A*t = £ q°m z°m+ £ Qm Zm Pt +  £ 0)t j V, j
m » /  m s /  I

t f = P l l  + £ qr„ z rm (P' . l -P*, . , )
m= /

u

A t  =  A t . i +  £  q m zt, (A*t . i - A t . 1)
IB=/
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The normality restriction in Eq. (4) is unnecessary for the GME approach, so we do not 

impose it. If we want to impose the restriction from theory that a  is positive, we specify its 

support as being only in the positive range. Because we assume no overshooting, we specify the 

support of yand 6 to include the range from 0 and 1. [If we wanted to allow for overshooting, 

we would require only that the support be positive.]

Solving the problem in Eq. (15), we obtain our GME-S estimates of do, a, y, and 0. In 

additional also obtain estimates of P and A* for all t.

3.4 Experiments

To compare the sampling properties of OLS, MELO-U, MELO-I, BMOM-U, BMOM-I, 

GME-R, and GME-S estimators, we use Monte Carlo experiments. We confirm Diebold and 

Lamb’s result that the MELO-U estimator has smaller MSE than OLS in small samples. We also 

show that the shrinkage estimators based on informative priors, MELO-I, BMOM-I, GME-R, and 

GME-S, dominate OLS, MELO-U, and BMOM-U in terms of mean square error and average 

bias.

3.4,1 Experimental Design

To facilitate comparison with Diebold and Lamb (1997), we use their experimental 

design. We generate 1,000 samples of data for each of various sets of parameters. In all 

experiments, Q -  0.5 (moderate adjustment speed), a =  2, cxq = 0.25 (subsistence farming). We 

vary the other parameters:18

y= 0.5 and 1 (where OLS is appropriate)

18 Diebold and Lamb (1997) report some additional intermediate parameter values. As the results tend to 
vary smoothly in those parameters, we only report the extreme cases to save space. We also tried varying a 
between 1 and 10 and found results that are qualitatively identical to our other experiments with a = 2, so 
we do not report them to save space.
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p  = 0.5 and 0.9 

au = 1,2,3, or 5 

<re= 1, 2, 3, or 5,

where

(P,-100)=P<Pt .,-100)+ £l, £, ~ UD N ( 0 ,  a \ ) ,  t -  1 .2  T.

is the price generating process. The initial conditions are set at their expected values: PQ 

= 100, /40 = A.i = Gj) + orE(P), which equals 200.25, where a  = 2. Because E(P) = 100, the supply 

elasticity is approximately 1.

Unless otherwise stated, the sample size is T = 25, which is typical of most empirical 

work that uses annual time series of acreage and price. For a sample size of T = 25, we generate 

27 observations and use the last 25 observations to estimate the reduced-form Eq. (5), which has a 

right-side variable with two lags. The structural model, Eqs. (1) - (3), involves only a single lag, 

so we use the last 26 observations. Thus, one advantage of using the structural model is that we 

gain an observation. The difference in performance between GME-S and OLS or MELO-U, 

however, has little to do with this extra observation. As we show below, the performance of 

GME-S is not very sensitive to the number of observations and not substantially different from 

GME-R, which only uses 25 observations.

We use the GAMS software program to obtain the GME estimates and Matlab to estimate 

the MELO and BMOM models using the same randomly generated samples. Each estimate takes 

only a few seconds of computer time. Our GME support spaces are [-20, 0, 20] for <%, [-10, 0, 

10] for a, and [0,0.5, 1] for y  and 0. We follow Golan, Judge, and Miller (1996) in using a 3a  

rule to determine the support for the error term in each sample (the standard deviation for A 

ranges from 4 to 6). The prior restrictions in MELO-I and BMOM-I are derived from the 

structural support: [-20, 20] for b\, [-10, 10] for b2, [0, 2] for b3, and [-1, 0] for &».
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The supports for a  and contain the range of the OLS estimates in most of our 

experiments. We force pand 9 to be elements of [0, I) based on economic theory.19

3.4.2 Results

The following tables and figure summarize our experimental results.20 To examine the 

relative efficiency of the seven estimators OLS, MELO-U (uninformative), MELO-I 

(informative), BMOM-U (uninformative), BMOM-I (informative), GME-R (reduced form), and 

GME-S (structural), we use the mean-squared error (MSE) criterion. Choosing the MSE as our 

loss function favors MELO in the sense that it is designed to minimize that particular loss 

function. We also examine the relative predictive power of the four estimates using the 

correlation between the actual and predicted values of A.

Table 3-1 compares the MSEs of the seven estimators for T = 25, a  = 2, y = 1, and 

various <rc and eru. Although OLS has infinite MSE in the population, its sample MSE is, of 

course, finite. We confirm Diebold and Lamb’s finding that the MSEs for MELO-U are smaller 

than for OLS. The estimators based on informative priors, MELO-I, BMOM-I, GME-R, and 

GME-S have MSEs on the order of 10'2 to 10'5, whereas the MSEs of OLS and MELO-U are 

many times larger (on the order of 10° or 10‘‘). The structural shrinkage estimator, GME-S, tends 

to have slightly smaller MSEs than do the reduced-form shrinkage estimators, MELO-I, BMOM- 

I, and GME-R.

19 Allowing their supports to be larger, [0,1,2], would slightly improves the GME results in the 
following experiments.

20 These tables replicate the qualitative results of Diebold and Lamb for the OLS and MELO estimators. 
Our quantitative results, however, differ from theirs. Russell Lamb graciously discussed this issue at length 
with us. Even after that discussion, however, we are unsure why our results differ as much as they do. 
Presumably, much or all of the difference is due to how the random numbers were generated. We use 
random numbers generated by GAMS or Shazam (which produced virtually identical results). Diebold and 
Lamb used a C program to generate their random numbers.

21 See Zellner (1978) for a justification of the squared error loss function.
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Tables 3-2 (p = 0.5) and 3-3 (p = 0.9) describe the empirical distributions of the 

estimated supply response coefficient, a, for a =  2; ae = 1; eru = 5; T = 25, 50, and 100; and y -  

0.5 and 1. When y  equals 1, the OLS approach is appropriate — and it performs better than 

when y =0.5. As /increases or T increases, the advantage of MELO-U over OLS in terms of 

MSE shrinks, as Diebold and Lamb noted. As T  increases, the MSE and the average bias for both 

OLS and MELO fall. As MELO-I, BMOM-I, GME-S, and GME-R estimates of a  are virtually 

"perfect" — having almost no bias and little variance — even with small samples, there is little 

room for improvement with larger sample sizes.

An alternative way to illustrate the superiority of the shrinkage estimators is to compare 

the histograms of the various empirical distributions o f , which we do Figure 3.1, where a - 2, at 

-  1, <7U = 5, v = 1. 6 = 0-5. p = 0.5, and T =25. As the distributions for GME-S and GME-R are 

virtually identical mass points at the true value of a  = 2, the figure shows a single distribution for 

both of them. The MELO-I and BMOM-I distributions are only slightly wider than the GME 

distributions, and much smaller than the OLS or MELO-U distributions.

These experiments are fairly benign ones where OLS does not perform extremely badly. 

The OLS sample distribution is single peaked and only a small fraction of a estimates are 

negative (which is inconsistent with the economic theory). The OLS estimates are likely to be 

much less precise when the denominator, 76, of the ratio in the expression for a  from the reduced 

form, a  = \yj8 = 62/(76), is nearly zero. We experimented with values of 7 and 0 where 76 was 

close to zero and found that the variance of the empirical distributions of for OLS and MELO-U 

were very large in absolute value, as we would expect, but the MELO-I, BMOM-I, GME-R, and 

GME-S estimates were still tightly bunched around the true parameter value.23

A A a a A
We recover <50 =bl / ( l - b 3 - b 4) and a  from the reduced-form estimators, and a 0, 

a ,  y , and 6  from the GME-S structural estimator, as Table 3-4 shows. As with a , the
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shrinkage estimators, MELO-I, BMOM-I, GME-R, and GME-S, have much smaller MSEs for 

a0 than do OLS, MELO-U, or BMOM-U. The structural estimator, GME-S, has the smallest 

MSEs by orders of magnitude. This table also shows the GME-S estimates for y  and 0, which 

cannot be estimated using the reduced-form approaches. In our experiments, the GME-S

estimates of y  have smaller MSEs than those for 9  P

All of the methods predict the crop acreage under cultivation, A. In addition, the GME-S 

approach provides estimates of the expected acreage. A*, and the expected price, /*. Table 3-5 

shows the correlations between the predicted and actual values for each method where a=  2, crt = 

1, <ru = 5, y= 0.5 or 1, and p  = 0.5 or 0.9. We expected that the maximum likelihood techniques, 

OLS, MELO-I, MELO-U, would predict acreage slightly better than do BMOM-U, BMOM-I, 

GME-R, and GME-S (where the objective is a balance between prediction and accuracy of 

estimation). MELO-I and BMOM-I perform as well or better than do OLS, MELO-U, and 

BMOM-U. GME-R does almost as well as the other estimators; however, the correlations for 

GME-S are slightly lower than for the reduced-form models.

Unlike the reduced-form methods, GME-S provides estimates of the predicted price, P, 

and desired acreage, A*, as Table 3-6 shows.24 In our experiments, GME-S does a remarkable 

job of predicting the expected price — the correlations range from 0.767 to 0.975 — but is less 

impressive in its estimates of the expected acreage — the correlations range from 0.323 to 0.596.

Table 3-7 shows how the MSEs change if the distribution of the errors is nonnormal. In 

particular, we draw the errors u and £ from a A2 distribution or from a t distribution with either 

five or seven degrees of freedom. As the GME estimators do not depend on assumptions about

22 Here, the MELO-I did perform better than the standard, informative Bayesian estimator.
23 Especially when y  is close to 1, we get better estimate of y  and 0  if we use support [0,1,2] instead of

[0,0.5,1], as in this table.
24 The BMOM approach could be used to obtain estimates of the full structural model. One could also 

use the moments from the GME-S estimates to derive a MELO estimator (though we expect that the two 
estimates would be virtually identical in our experiments).
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these distributions, we expected the GME to perform better. Indeed, the MSEs for the GME 

estimators are orders of magnitude smaller than for even the MELO-I or BMOM-I estimators. 

The MSEs of OLS, MELO-U, and BMOM-U are substantially larger than those of the other 

estimators.

3.5 Prior Information in Shrinkage Estimators

Our experiments indicate that the shrinkage estimators, MELO-I, BMOM-I, GME-R, and 

GME-S have much smaller MSEs than do the OLS and MELO-U estimators. In general, we 

know that prior information can lower the MSE compared to standard techniques provided the 

"prior information incorporated in the decision rule forecasts is at least reasonably accurate" 

(Zellner 1963).

One might ask, however, how sensitive our results are to our choice of prior information. 

All four shrinkage estimators specify the supports for the coefficients and for the error terms. [In 

addition, MELO-I requires an assumption about the error distribution.]

In Table 3-8, we show what happens to the MSE as the supports become wider (on the 

basis of 100 replications). If the supports on the reduced-form coefficients increase substantially 

(up to 40 times), the MSEs from MELO-I and GME-R tend to increase but remain below those of 

OLS and MELO-U. [Because the GME-S estimates different coefficients and has more supports, 

we cannot directly compare the effect of increasing supports to the reduced-form estimators, 

though the qualitative effects are similar.]

In our experiments, we use the sample standard deviation of A, s ,  to set our supports for 

the error term. The GME estimators use a support of [-3 s , 0, 3 s ] for the error term. Table 3-8 

shows what happens to the overall MSE if we widen the supports for the GME estimators or the 

prior restrictions for MELO-I and BMOM-I by a multiple of sigma. Hence, the effects of this 

experiment is different for the three estimators. The MSEs for MELO-I, GME-R, and GME-S
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tend to increase. The three-sigma rule for the GME estimators works reasonable well in 

obtaining a low MSE. Even with much wider supports (such as 200o), MELO-I, GME-R, and 

GME-S have substantially smaller MSEs than do OLS or MELO-U.

Based on these results, we conclude that the MSEs are relatively insensitive to changes in 

the error support, and are only moderately sensitive to the support of the coefficients. Even with 

very large supports — for example, the largest support on a  is [-400,400] — these shrinkage 

estimators perform substantially better than do the estimators that are not based on informative 

priors. Therefore, one could impose "conservative" priors and still benefit significantly from 

using shrinkage estimators.

3.6 Conclusions

The traditional approach to estimating the Nerlove model of agricultural supply response 

using ordinary least squares produces highly variable estimates. Diebold and Lamb (1997) 

showed that this variability was partially due to the problem estimating a ratio using OLS. They 

further demonstrated that Zellner's minimum expected loss approach with an uninformative prior 

(MELO-U) produces less variable estimates. We show that Zellner's Bayesian method of 

moments estimator with an uninformative prior (BMOM-U) performs similarly to MELO-U.

Our simulation experiments demonstrate that the shrinkage estimators — the minimum 

expected loss approach with an informative prior (MELO-I). the Bayesian method of moments 

estimator with an informative prior (BMOM-I), and our generalized maximum entropy reduced- 

form and structural approaches (GME-R and GME-S) — have much lower average bias and 

mean square errors in small samples than do OLS, MELO-U, or BMOM-U. Moreover, in our 

experiments, the benefit of these informative shrinkage estimators occurs even when relatively 

little additional information.

53

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Another advantage is that we can use the generalized maximum entropy approach to 

estimate the full structural agricultural supply response model, whereas we can only estimate a 

reduced-form Nerlove model using traditional methods. Consequently, GME allows us to 

recover parameters that cannot be estimated using reduced-form approaches.

The GME has two other advantages over classical and Bayesian approaches. First, the 

GME does not require us to make distributional assumptions, unlike the other approaches. In our 

simulations, the GME approaches performed much better than did the other methods when the 

underlying error distribution was nonnormal. Second, imposing inequality restrictions (such as 

bounding adjustment parameters between 0 and 1) is relatively easy. A similar GME approach 

will allow estimation of structural models instead of reduced-form equations in other problems 

besides that of agricultural supply.
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Table 3-1 M ean Square Error of the Estimated a  from Experimental Data,
T = 25, a -  2, Y -  1. number of samples = 1,000

CTe CTu OLS MELO-U MELO-I

p = 0.5 

BMOM-U BMOM-I GME-R GME-S

1 5 3.9299 1.1394 0.0081 2.0407 0.0136 0.00028 0.00016

3 3 0.1461 0.1271 0.0188 0.1353 0.0194 0.00007 0.00008

2 3 0.3077 0.2647 0.0147 0.2819 0.0165 0.00012 0.00009

3 5 0.4040 0.2928 0.0143 0.3294 0.0160 0.00019 0.00016

5 5 0.1653 0.1352 0.0224 0.1476 0.0243 0.00014 0.00014

Ot Ou OLS MELO-U MELO-I

p = 0.9 

BMOM-U BMOM-I GME-R GME-S

1 5 1.7559 1.1284 0.0080 1.3468 0.0174 0.00033 0.00015

3 3 0.1542 0.1291 0.0186 0.1402 0.0195 0.00007 0.00007

2 3 0.3385 0.2469 0.0154 0.2808 0.0165 0.00012 0.00009

3 5 0.3897 0.2925 0.0156 0.3286 0.0178 0.00021 0.00018

5 5 0.1544 0.1306 0.0220 0.1414 0.0220 0.00015 0.00015
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Table 3-2 Empirical Distributions of the Estimated Supply Response Coefficient a
0 = 2, cr€= 1, tru = 5, p  = 0.5

Y =0.5
T OLS MELO-U MELO-l BMOM-U BMOM-l GME-R GME-S

Mean 1.38 1.06 1.97 1.23 1.98 1.99 2.00
SD 3.34 1.01 0.12 1.93 0.15 0.03 0.01

25
MSE 11.55 1.90 0.02 4.33 0.02 0.001 0.0002
Min -48.49 -2.43 0.91 -24.55 1.30 1.58 1.92
Max 74.36 7.09 2.81 37.27 2.96 2.48 2.08
Bias 1.37 1.16 0.09 1.25 0.11 0.02 0.01

Mean 1.33 1.24 1.93 1.28 1.95 1.98 2.00
SD 0.82 0.75 0.11 0.78 0.14 0.04 0.01

50
MSE 1.12 1.14 0.02 1.13 0.02 0.002 0.0002
Min -1.46 -1.33 1.31 -1.40 1.45 1.30 1.84
Max 7.47 6.80 2.45 7.15 2.49 2.04 2.03
Bias 0.88 0.90 0.10 0.89 0.11 0.03 0.01

Mean 1.37 1.32 1.88 1.34 1.90 1.97 2.00
SD 0.55 0.53 0.10 0.54 0.14 0.04 0.02
MSE 0.70 0.74 0.02 0.72 0.03 0.003 0.0003

100 Min -0.35 -0.36 1.55 -0.35 1.44 1.29 1.88
Max 3.38 3.28 2.34 3.33 2.30 2.04 2.21
Bias 0.71 0.74 0.13 0.72 0.14 0.04 0.01
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Table 3-2 (Continued)

on

T OLS MELO-U MELO-l BMOM-U BMOM-I GME-R GME-S
Mean 1.79 1.56 1.98 1.69 1.99 1.99 2.00
SD 1.17 0.96 0.09 1.05 0.11 0.02 0.01

25
MSE 1.41 1.12 0.01 1.21 0.01 0.0004 0.0002
Min -3.24 -1.24 1.32 -2.29 1.61 1.76 1.96
Max 7.34 5.87 2.32 6.31 2.38 2.04 2.04
Bias 0.91 0.86 0.07 0.87 0.09 0.01 0.01
Mean 1.93 1.83 1.97 1.88 1.98 2.00 2.00
SD 0.76 0.70 0.08 0.73 0.11 0.02 0.01

50
MSE 0.59 0.52 0.01 0.55 0.01 0.0003 0.0001
Min -0.44 -0.55 1.63 -0.49 1.58 1.89 1.94
Max 5.43 5.14 2.42 5.29 2.37 2.04 2.03
Bias 0.59 0.56 0.06 0.58 0.08 0.01 0.01
Mean 1.97 1.92 1.97 1.95 1.97 2.00 2.00
SD 0.54 0.53 0.10 0.53 0.12 0.02 0.02

100
MSE 0.29 0.28 0.01 0.29 0.02 0.001 0.0002
Min 0.78 0.77 1.64 0.77 1.54 1.89 1.90
Max 4.22 4.07 2.39 4.15 2.56 2.06 2.06
Bias 0.43 0.43 0.08 0.43 0.10 0.02 0.01

61

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

Table 3*3 Empirical Distributions o f Estimated Supply Response Coefficient a
a=  2, ae = I,  <j u =  5 , p = 0 . 9

Y =0.5
T OLS MELO-U MELO-I BMOM-U BMOM-l GME-R GME-S

Mean 1.46 1.49 1.95 1.48 1.97 1.99 2.00
SD 5.28 0.89 0.11 2.83 0.15 0.03 0.01
MSE 28.10 1.05 0.01 8.29 0.02 0.001 0.0002

25 Min -129.95 -2.14 1.45 -66.07 0.88 1.68 1.95
Max 13.44 5.66 2.42 9.02 2.68 2.03 2.04
Bias 1.10 0.80 0.09 0.95 0.11 0.02 0.01
Mean 1.77 1.71 1.92 1.75 1.94 1.99 2.00
SD 0.57 0.54 0.12 0.56 0.13 0.02 0.01

f  A
MSE 0.38 0.38 0.02 0.37 0.02 0.001 0.0002

50 Min -0.93 -0.79 1.47 -0.86 1.42 1.84 1.95
Max 4.10 3.80 2.35 3.96 2.41 2.04 2.03
Bias 0.47 0.47 0.11 0.47 0.11 0.02 0.01
Mean 1.84 1.82 1.89 1.83 1.91 1.99 2.00
SD 0.33 0.33 0.13 0.33 0.14 0.03 0.02

1 A A
MSE 0.14 0.14 0.03 0.14 0.03 0.001 0.0003

100 Min 0.74 0.73 1.60 0.74 1.44 1.88 1.92
Max 3.62 3.38 2.35 3.50 2.42 2.06 2.04
Bias 0.29 0.30 0.14 0.29 0.14 0.02 0.01
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Table 3-3 (Continued)

n ©

T OLS MELO-U MELO-I BMOM-U BMOM-I GME-R GME-S
Mean 1.87 1.75 1.97 1.81 1.99 2.00 2.00
SD 0.88 0.77 0.09 0.82 0.11 0.02 0.01

25
MSE 0.79 0.65 0.01 0.71 0.01 0.0003 0.0002
Min -1.07 -0.73 1.39 -0.90 1.63 1.87 1.95
Max 6.80 5.22 2.55 6.07 2.57 2.04 2.04
Bias 0.67 0.63 0.07 0.65 0.08 0.01 0.01
Mean 1.96 1.92 1.97 1.94 1.98 2.00 2.00
SD 0.49 0.48 0.10 0.48 0.12 0.02 0.01

50
MSE 0.24 0.23 0.01 0.24 0.01 0.0004 0.0002
Min 0.06 0.04 1.63 0.06 1.58 1.89 1.94
Max 3.81 3.61 2.31 3.71 2.38 2.04 2.03
Bias 0.37 0.37 0.08 0.37 0.09 0.01 0.01
Mean 1.98 1.96 1.96 1.97 1.97 1.99 2.00
SD 0.29 0.28 0.12 0.29 0.12 0.02 0.02

100
MSE 0.08 0.08 0.02 0.08 0.02 0.0004 0.0003
Min 0.98 0.96 1.64 0.97 1.68 1.92 1.92
Max 3.27 3.25 2.32 3.26 2.37 2.05 2.04
Bias 0.22 0.22 0.10 0.22 0.11 0.02 0.01
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Table 3-4 Estimates of the Structural Coefficients
ot = 1, ou = 5, a = 2, p = 0.5, y = 0.5, 0 = 0.5, T -2 5

Qo a
Mean SD MSE Mean SD MSE

True 0.25 2
OLS 62.67 333.45 115,077 1.38 3.34 11.55
MELO-U 94.39 100.66 18,657 1.06 1.01 1.90
MELO-I 3.24 11.94 143.91 1.97 0.12 0.02
BMOM-U 77.62 192.93 4,290 1.23 1.93 4.33
BMOM-I 2.06 15.06 226.28 1.98 0.15 0.02
GME-R 1.56 3.04 10.98 1.99 0.03 0.00125
GME-S 0.14 0.53 0.29 2.00 0.01 0.00017

Y 0
Mean SD MSE Mean SD MSE

True 0.5 0.5
GME-S 0.39 0.12 0.0272 0.89 0.04 0.1548

Note: OLS, MELO-U, MELO-I, and GME-R do not provide estimates of y and 9.
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Table 3-5 Correlations between A  and A
a  = 2, ot = 1, ou = 5, p = 0.5, y = 0.5, 0 = 0.5, T=25

Y P OLS,
MELO-U,

BMOM-U*
MELO-I BMOM-l GME-R GME-S

0.5 0.5 0.578 0.614 0.655 0.546 0.528

25
0.9 0.703 0.726 0.747 0.687 0.692

1.0 0.5 0.623 0.633 0.665 0.608 0.572
0.9 0.736 0.744 0.767 0.725 0.709

0.5 0.5 0.593 0.614 0.648 0.582 0.500

50
0.9 0.766 0.770 0.785 0.764 0.736

1.0 0.5 0.644 0.649 0.663 0.640 0.558
0.9 0.796 0.796 0.808 0.794 0.764

0.5 0.5 0.608 0.620 0.649 0.603 0.459

100
0.9 0.814 0.813 0.822 0.813 0.775

1.0 0.5 0.656 0.654 0.665 0.654 0.523

0.9 0.835 0.834 0.839 0.834 0.795

* The OLS and MELO-U correlations are very close but not identical.
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Table 3*6 GME-S Correlations between P* and P* and between A *  and A*
at = 1, ou = 5, p = 0.5, y = 0.5, 9 = 0.5, 7=  25

T Y P P 'andP 6 A* and A*
0.5 0.5 0.748 0.347

25
0.9 0.834 0.472

1.0 0.5 0.737 0.388
0.9 0.838 0.485

0.5 0.5 0.858 0.337

50
0.9 0.938 0.528

1.0 0.5 0.805 0.389
0.9 0.903 0.549

0.5 0.5 0.900 0.320

inn 0.9 0.966 0.578
1UU

1.0 0.5 0.844 0.378
0.9 0.941 0.595
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Table 3-7 MSE When the Distributions o f «„ and oe are Not Normal
T= 25, a = 2, y = 0.5, p = 0.5, number of samples = 100

XI Xi *5 h

OLS 0.120 0.162 1.96 0.096

MELO-U 0.107 0.113 0.101 0.083

MELO-I 0.026 0.041 0.030 0.027

BMOM-U 0.109 0.130 0.643 0.083

BMOM-I 0.029 0.041 0.032 0.032

GME-R 0.00005 0.00013 0.00005 0.00006

GME-S 0.00007 0.00006 0.00004 0.00003
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Table 3-8 MSE for Various Supports
ae = 1, ou = 5, p = 0.5, y = 0.5,0 = 0.5, T =25

Changes in the support for only the reduced-form coefficients
MELO-l BMOM-l GME-R

original 0.009 0.020 0.007

5x larger 0.453 0.492 0.142

I Ox larger 0.911 0.959 0.469

20x larger 1.075 1.195 0.898

40x larger 1.041 0.980 1.160

e of the support or only the errors 
MELO-l BMOM-l GME-R GME-S

o 0.0094 0.0202 0.00071 0.00017

2a 0.0169 0.0546 0.00011 0.00011

3a 0.0260 0.0377 0.00010 0.00011

4a 0.0269 0.0650 0.00010 0.00011

5a 0.0430 0.1000 0.00010 0.00011

10a 0.0353 0.4831 0.00009 0.00011

20o 0.0424 1.4460 0.00009 0.00011

100a 0.0490 1.7309 0.0099 0.0116

200a 0.0499 1.6573 0.115 0.132

Note: MSE of OLS is 1.283, and the MSE of MELO-U is 1.098.
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Chapter 4 MELO Estimates of Willingness

to-Pay in Dichotomous Choice Contingent 

Valuation

4.1 Introduction

This paper introduces a new approach that provides superior willing-to-pay (WTP) 

estimates in discrete or dichotomous choice (DC) contingent valuation (CV). The DC model has 

emerged as a new tool in CV studies to evaluate non-market resources or public goods. Recently 

economists have identified a large number of biases (systematic over- or under-estimates of true 

WTP) in this model25. While studying the bias and variability problems, many papers focus upon 

such factors as distributional assumptions, choice of bid vehicles, starting-point bid values, 

hypothetical market bias, and strategic bias (which occurs when respondents believe that their 

answers may influence environmental policies). Yet one fundamental factor has been neglected. 

Because the ML WTP estimators involve ratios of estimated coefficients, they often do not 

possess finite sample moments and are therefore subject to large errors.

The objective of the paper is to find alternative ways to improve WTP estimates given 

correct model specification and no hypothetical question bias. This paper adopts a Bayesian 

approach using Zellner (1978)’s minimum expected loss estimator (MELO), which has been 

employed in a wide range of estimation problems including structural coefficient system 

equations and reciprocals and ratios of regression coefficients. Diebold and Lamb (1997) and

25 Some papers include Boyce et al (1985), Mitchell and Carson (1989), Bateman and Willis (1995), and 
Kanninen (1995).
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Perloff and Shen (1998) used MELO to improve the estimates of the Nerlove agricultural supply 

model. Bewley and Fiebig (1990) applied it to estimate long-run responses in dynamic models. 

To better approximate the expected consumer surplus of recreational demand, which involves an 

inverse of a parameter, Bockstael and Strand (1987, pp. 17, equation [14]) and Hanemann (1982) 

suggest a formula that is similar to the MELO approach.

Compared with the maximum likelihood approach that is extensively used in CV studies, 

the MELO estimator has finite moments and provides less biased and more precise WTP 

estimates. It is easy to implement and the efficiency gain is more significant when the bid 

questions are ill-designed. When economic-theory-based restrictions are utilized, the MELO 

framework can further improve the WTP estimates.

The rest of the paper is organized as follows. Section 2 outlines the single-bounded DC 

framework and the ML approach in estimating WTP. Section 3 discusses problems with the ML 

approach and introduces the MELO estimator. Section 4 presents Monte Carlo experiments that 

illustrate the performance of MELO estimates in simulated data sets. In Section 5, MELO is 

applied in two CV studies. Section 6 discusses the procedure to handle non-diffuse information 

in the MELO framework. And finally Section 7 presents conclusions.

4.2 WTP Model

The single-bounded (SB) DC WTP model, originally proposed by Bishop and Heberlein 

(1979) and refined by Hanemann (1984), has been widely used in contingent valuation studies. 

Let us consider the case of assessing the recreational value of environmental goods such as visits 

to a national park, a Ashing site, or a state beach. In the DC CV framework, participants in the 

survey are given a scenario of policy that provides public goods or otherwise affects the natural 

environment. Each participant of the CV study is asked a randomly selected bid question, say,

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



www.manaraa.com

“Are you willing to pay ten dollars to enter a national park for one day?” The respondent can 

answer “Yes” or “No” to the bid question. The bid values B are randomly selected from a 

possible range, depending upon the “prior” knowledge of WTP distributions. The probability of 

saying “Yes” and “No” can be represented respectively by.

G(.) is the cumulative density function for answering “No”, which in practice often takes 

either a logistic or probit form. Given the logistic form, G(.) is

the x-axis represents the bid question and the y-axis represents the probability of “Yes” answers. 

The curve represents the underlying relationship G(.) and the dots represent sample frequency of 

“Yes” at each bid value. Suppose N  individuals answer i f  ( i f  =1 if “Yes” and 0 if “No”, / = I, 

.... iV) to a randomly chosen positive bid value Given the sample, the maximum likelihood 

(ML) method estimates of a  and f i  are obtained by maximizing the joint log-likelihood

n Y = l - G ( B )  

n N = G(B).

(i)

(2)

where a  and f i  are parameters to be estimated.26 Figure 4.1 illustrates the model where

(3 )
1=1

26 The logistic form is here used as a bench model but the major results hold for the probit form as well.
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Under the assumption of correct specification and independent observations, the ML

A a 2*7
produces both consistent and asymptotically efficient estimates a  and p  . The CV literature 

defines the median WTP as

W 7T=“  (4)
P

The corresponding estimate of the truncated (restricted) mean WTP is given by 

Hanemann (1989) as

WTP+ = ln(\ + e a )
P

4.3 MELO Approach

The ML approach has been recognized as the most widely used statistical technique in 

empirical CV studies for finding WTP point estimates in (4) and (S), which are then converted to 

population total value figures. However, there are problems in (4) and (5) that need to be 

addressed. This section focuses upon the media WTP (4) because of its simplicity in form, but 

the discussions can easily extended to the truncated mean WTP (S) as well.

Since both a  and 0  are estimators or random variables, their ratio possesses some 

undesirable properties. It is well known that ratios of random variables have Cauchy tails and 

hence no finite moments and risk relative to quadratic and other loss functions (Bergstrom 

[1962], Zellner [1978, 1986], Zellner and Park [1979], and Zaman [1981]). Moreover, they may 

generally display multi-modal distributions (Lehmann and Shaffer [1988]). As shown in the

27 ML yields biased estimates ford and P in small samples, but the bias vanishes as sample size goes to 
infinity.
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following experimental results, the non-existence of first and second moments and multi-modality 

would contribute to variability in the WTP estimates. To solve these problems, Zellner (1978) 

suggests a minimum expected loss (MELO) procedure that minimizes the posterior expectation of

a generalized quadratic loss function, that is, minEf3z( ^ - - 0  )2, where E() is the posterior
e p

a
expectation and 0  is some estimate of — . Given any given prior likelihood and data, the 

MELO estimate of WTP is given by

(6)

s  l + Cov( a, f i ) / [E(  a  )E(P)J 
1 + Var(P)/  E 2( P )

where E(), Var(), and Cov() are posterior mean, variance and covariance respectively, and S is the 

shrinkage factor. MELO has finite first and second moments as well as finite risk with respect to 

quadratic loss in both small and large samples. In addition, it is consistent, asymptotically 

efficient, and asymptotically normal (Zellner [1978] and Zellner and Park [1979]). Thus the 

MELO and ML estimators have very different finite sample property; however as sample size get 

large, their large sample distribution becomes identical.

Suppose we do not have any prior knowledge regarding the likelihood of the parameters. 

Given the diffuse (uninformative) prior, the posterior (a; P) is approximated normally distributed

with mean ( a , P ) and covariance matrix Cov( a , p )  where (&, j3) are ML estimates and 

Cov( a , P ) are ML variance-covariance matrix. This approximate is a special case of Jeffrey’s
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(1967) general result on the large sample normality of posterior pdfs (Zellner and Rossi [1984] 

and Clogg, et al [1991). Therefore equation (6) can be re-written as28

IvffW o = (7)
P

s _ \ + C ov{a ,0)/a0  
1 + Var( 0 ) /  j}1

It can be seen that MELO estimator (7) is the product of %  and S, the shrinkage factor
0

that is not equal to one in small samples. S is greater (less) than one when

Cov(a,0) Var(0 )  . Cov(6 ,0 )  . . a  p .
 > ( < ) — zr— , or in other words, > ( < ) — . When either 0  is smaller or

60 0 2 Var($) 0

is subject to larger error, S is more likely to be less than one. This is because the errors in 

denominator have larger impacts upon a ratio when the denominator is closer to zero. Therefore 

MELO estimates are more stable than the ML estimates especially when the estimated parameters 

are subject to larger errors or the denominator is more likely to be zero. In large samples, 5 

becomes one as all elements of the variance-covariance matrix goes to zero and hence the MELO 

estimates are the same as the corresponding ML ones.

Essentially the MELO approach uses the variance-covariance matrix of the estimated 

parameters to improve point estimates. MELO may also provide less biased estimates than the 

ML approach does, as shown in the experiments in Section 4. The reason is that equation (7) can 

be viewed as a second-order Taylor approximation of the ratio under certain conditions (see

Appendix A). These conditions are that _ r_( )̂ and Covfo0)_ are small, or in other words, that
Eift)1 E(a)E(0)

28 It should be noted that the normal approximation might not be close to the finite estimator property in 
small samples. Numerical analysis such as Newton-raphon routine can be used to compute exact finite 
sample posterior distribution of coefficients.
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both & and are statistically significant. However, in practice the MELO estimator does not

guarantee reduction in WTP bias because both a  and f t  are biased estimators in finite samples 

(Griffiths [1987]), so that the WTP estimator will still be biased. For instance Diebold and Lamb 

(1997) show a trade-off between lower MSE and a more biased estimate of agricultural supply 

elasticity under MELO.

Analogous to that of median WTP, the MELO estimate of the truncated mean WTP given 

an un-informative (diffuse) prior is

«  + ---------TTT^ar(a)
wfP+ -  yi+e-*)-

‘ MELO -

1 +

P
( r  & f  f f

Var( a  )Cov( a, $ )  /

S + (8)

S* =•
l + e

a  +--------- — Var(d)\
2(l + e )

I + V a r ( 0 ) /$ :

See Appendix B for detailed derivations. The derivation of equation (8) closely follow 

that of equation (7). The delta method (propagation of error) is adopted in the derivation to

approximate the posterior mean E(ln( 1 + ea )) and posterior variance Var(ln( 1 + ea )).

The MELO estimators of WTP (7) and (8) are relatively simple in form and easy to 

compute. Given a diffuse prior, we first obtain ML estimates and then compute the shrinkage 

factor 5 using the variance-covariance matrix of the ML estimates. Section 6 will discuss 

obtaining MELO estimates given a non-diffuse prior in which the parameter signs are known 

from the random utility theory of contingent valuation.
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4.4 Monte Carlo Experiments

This section presents Monte Carlo (MC) analysis to illustrate the performance of both 

MELO and ML estimators in the data generated under three experimental designs with various 

parameters and bid sets. All these experiments assume a correct model specification, a logistic 

cdf function, and independent observations. They all demonstrate that MELO provides better 

WTP estimates than the ML approach in terms of MSE and standard errors and that the efficiency 

gain could be larger when the bid questions inadequately cover the WTP distribution. The 

simulations and estimations were implemented using Shazam and Matlab programs.

4,4.1 The First M C Experiment

In this experiment, data are drawn randomly from the same underlying logistic cdf

a
specification where a  = 2, and p  = 0.2, median WTP = — = 10, and

P

l t l(  14* )WTP* = ------------- = 10.635. Bid values B are generated from a uniform distribution,
P

B ~ Unif(0,20), and the probability l t Y under each B is computed using equations (2) and (1).

Given each B and its probability 7ty , one Bernoulli number lr is drawn. 500 samples of size N = 

30 are generated and estimated using both the ML and MELO approaches. Columns two and 

three of Table 4-1 compare the empirical distributions of both estimates using the above

generated samples. The empirical MSE is 4.69 under MELO in contrast to 16.92 under the ML 

approach.

The above experiment is well balanced since the bid values cover most (12% to 88%) of 

the WTP distribution and are symmetric around the median WTP. But empirical WTP 

knowledge is usually limited in practice. One of the sources of WTP bias in CV is the choice of 

starting bid points, which has been extensively discussed in many other papers. These papers
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include Boyle, Bishop, and Welsh (1985), Kristrom (1990), Cooper and Loomis (1992), 

McFadden and Leonard (1992), Kanninen and Kristrom (1993), and Cooper and Loomis (1993). 

Most papers find that the mean and median WTP estimates are sensitive to survey design. 

Adding or omitting bid amounts in either the upper or lower end of the distribution could 

significantly affect the estimates.

Table 4-1 gives the results under two more experiments: the second and third bid designs. 

The second design B -  Unif( 0,10) allows only bids between 12% and 50% of the WTP 

distribution, and the third design B -  Unif( 10,20) covers only the upper portion of the 

distribution. Not surprisingly, the ML procedure does a worse job in both experiments, 

sometimes yielding large positive or negative WTP values and generally understating the true 

median WTP. On the other hand, the MELO estimates cluster around the true WTP, substantially 

reducing standard errors, MSE, and bias. The third design shows the greatest improvement. The 

MSE under the MELO approach is 9.79 compared to 2864.8 under the ML one.

The estimates in Table 4-1 are also displayed in Figures 4.2 through 4.3. The MELO 

estimates have much smaller variances compared to the ML ones particularly in Figures 4.2 and 

4.3. The instability of the traditional estimates is largely due to thick tails or the presence of 

“outliers”, but the MELO estimator eliminates these tails. Table 4-2 displays the empirical 

distributions of WTP+ estimates (equation [3]) where the MC experiments are the same as in

Table 4-1 ( a  = 2, =0.2, WTP* ~ 10.635, and N  = 30). The same conclusion can be reached

from Table 4-2 as from Table 4-1.

4.4.2 The Second and Third Monte Carlo Experiments

To demonstrate that the improvements of the MELO estimates are not limited to specific 

parameters, two additional MC experiments, the second and the third ones, are selected from the 

current environmental economics literature. The simulated data are then estimated by both the
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ML and MELO procedures. Both experiments have results that are similar to those found in 

Section 4.1.

The second MC experiment is adopted from Table 4-1 of Kanninen (199S) that studies 

the bias and variance of WTP using five different bid designs (A through E). The parameters 

( a ,  P) are set at (1.8, 0.009). The base set bid (A) has twenty bids that range from $3 to $700 

and cover 14.5% and 98.9% of the distribution. For a more detailed discussion of the 

experimental design, please see Kanninen (1995). The MC results are reported in Table 4-3. The 

MELO estimator always reduces MSE and the reduction is particularly significant in case E 

where bids cover the upper tail of WTP only — MSE is 3932.9 under the MELO compared to 

6190.7 under the ML approach. Table 4-3 does not indicate a significant reduction in bias.

The third MC experiment is from Cooper and Loomis (1993) (their Table 4-3) who 

analyze the effects upon WTP estimates of omitting middle or outer bids. This experiment is 

generalized here by introducing a random white noise term £ with mean zero and standard 

deviation y , which creates more “noise” in the data. The rationale behind having an error term is 

that many o’her factors such as taste, experience, and culture affect WTP decisions but are not 

observed during the survey. Under the assumption of logistic form, the probability of “Yes” 

answer can be written as

x ’ =1 (9)

e ~ N(Q,y)

where £ is assumed to be i.i.d. A higher y  implies greater uncertainty in the simulated data sets, 

and under y  = 0, the experiment becomes that of Cooper and Loomis. The parameters are 

a  = 1.4136, P  = 0.008561, Q = 0.00362, and y  = 0 (no noise), 1, and 2. Cooper and Loomis 

created D as a “Deer-seen” variable, which is randomly drawn from a normal distribution with
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mean 95.78 and standard deviation 119.226. Given these parameters, the truncated mean WTP is 

206.7.

The experimental analyses are presented in Table 4-4, which yield the same qualitative 

results as those in Cooper and Loomis (1993). As expected, a higher y  leads to less stable WTP 

estimates. But MSG and standard errors are always smaller in MELO except for one case 

(Design B, y  = 0). The gain of MELO over the conventional approach is particularly large in 

Design C when outer bid values are excluded in the simulated data sets.

4.5 Applications of MELO

The MELO procedure is used to provide basis of comparison with the results using the 

ML approach in two empirical contingent valuation studies that are adopted from the current 

literature. This first study is Hanemann, Loomis, and Kanninen (1991) and the second study is 

Riddle and Loomis (1998). Both applications reveal that the MELO estimates of WTP in SB 

model are more likely to be precise than the ML ones.

4.5.1 Hanemann and et a l (199iys study

Hanemann and et al evaluated the fish and wildlife resources in San Joaquin, California. 

Conducted for the Interagency San Joaquin Valley Drainage Program, the survey focuses on 

WTP for protecting wildlife and wetlands habitant. The CV technique was designed to evaluate 

the economic value of fish and wildlife in the Valley. Both mail and telephone methods were 

used to survey randomly selected households. The survey was carried out in 1989, and more than 

1,000 people participated in it. A more detailed description can be found in Jones and Stoke 

Associates (1990).

The data are fit into both the SB as well as double-bounded (DB) discrete choice models. 

The DB model is similar to the SB one except that each participant is presented with two bids
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where the level of the second bid is contingent upon the response to the first one. Those 

respondents who say “No” in the first bid are presented with a lower bid and those respondents 

who say “Yes” to the first bid are presented with a higher bid. Hanemann et al have showed that 

the DB model is asymptotically more efficient than the SB model. Their study reveals that the 

WTP is over-estimated in the SB model.

Table 4-5 lists the WTP estimates in the two models, by both the ML and MELO 

approaches. Under the ML approach, the SB model estimate ($250) exceeds the DB model 

estimate ($151) by a factor of more than 60%. The MELO estimates, in the second row of Table 

4-5, reduce their difference: the MELO estimates are $257 and $217.60 in the SB and DB models 

repetitively. There is small difference between the two approaches in the DB model because the 

variance-covariance of the estimated parameters is small. Similar results are obtained for the 

truncated WTP estimates.

4.5.2 Riddle and Loomis (1998)*s Study

Similar findings exist during the MELO’s application in Riddle and Loomis’s study, 

which evaluates WTP for three programs (California/Oregon Program combined, Oregon 

Program only, and California Program Only) designed to reduce fire hazard in California and 

Oregon’s spotted Owl habitat. The data were obtained from a CV survey conducted in 1995, and 

the total number of respondents who completed the survey is 353. A complete discussion of the 

CV design and the empirical results can be found in Riddle and Loomis.

The data are fit into the SB as well as DB models and the estimated median WTPs for 

each of the three programs are reported in Table 4-6. Under the ML approach, WTP estimates in 

the SB model generally exceed these in the DB model (except for the Oregon Program). The 

estimates of the two models are more similar under the MELO approach. Take the 

California/Oregon combined program for example, the median WTP estimates are $32.16 in the
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SB model and $25.24 in the DB model. The MELO approach lowers the SB WTP estimate to 

$26.71, which is closer the corresponding DB WTP estimate of $25.05.29

4.6 Use of Prior Information in MELO

In addition to the efficiency gain under a diffuse prior, the MELO approach allows us to 

use prior restrictions and hence further improve WTP estimates. A common belief in CV 

economics is that environmental goods contain positive values and people are willing to pay a 

certain amount in exchange for better environmental quality. This implies restrictions in the 

dichotomous choice models: a > 0 , (3 > 0 , WTP > 0, and WTP+ > 0.

MELO can use this prior information to gain more efficiency in the value estimates 

(called MELO-I). The above information implies the restriction that the coefficients lie within 

certain ranges (here the restrictions are or > 0 and >0).  To impose the restriction within a 

Bayesian framework, Geweke’s (1986) technique is utilized. The first step of the technique is to 

generate a large number (7) of samples of a. and P  using their known posterior distributions. In 

the second step, those observations for which either a  or P  fails to satisfy the restrictions are 

rejected. The remaining observations a  and P  constitute a truncated posterior distribution a 1 

and P ' that are consistent with the prior restrictions. Finally, the MELO-I estimate of median 

WTP is

29 Riddle and Loomis presented a technique that can jointly estimate WTP for multiple scenarios within the 
survey, which is more efficient than estimating equation separately when error correlation exist. Similarly, 
MELO procedure can be used to jointly estimate system equations.
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w w ,  =§^r.s‘ < 1 0 >
E(P )

s , _ l+ C ovfa1 , / 3 ' ) / E (a ' )E (fi‘ ) 
l + V a r i f i '  ) /E ( P l )2

where E(), Cov(), and Var() are posterior mean and variance-covariance respectively and can be 

evaluated numerically.

Table 4-8 compares the median WTP estimates under MELO with MELO-I in which 

restrictions a  > 0 and j5 > 0 are imposed. Given reasonable prior information, MELO-I 

improves WTP estimates. The improvement indicated in Table 4-7 is particularly significant 

when bid questions are ill-balanced. Although little gain in MSE is achieved in the first bid 

design, in the second and third design (Column 4-5 and 6-7) MELO-I drastically cuts the MSEs 

by more than half compared with those under MELO. Information can greatly increase the 

reliability of estimates provided that the information is reasonably accurate (Zellner [1963]).

4.7 Conclusions

While contingent valuation is becoming an increasingly useful tool in environmental, 

resource, and other studies, many papers have shown that there are bias and precision problems in 

the WTP estimates. Therefore it is important to examine this issue in more detail. This paper 

finds that some of the problems are attributed to the non-existence of moments under the ML 

approach and suggests an alternative estimator ~ minimum expected loss (MELO). The MELO 

procedure is more efficient for a given sample size, and the efficiency gain is larger when the bid 

values are ill-posed. This approach can be applied to the DC, travel cost, and other models where 

key estimates involve ratios or inverses of regression parameters. The MELO approach is likely 

to be of great use in determining the economic values of environmental and public goods for 

which it is difficult to obtain market data.
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4.8 Appendix

4.8.1 The MELO and Second-order Taylor Approximation

To gain further insight on % .  it is decomposed into a second-order Taylor approximation
P

around E(a) and £(/?),

a a J W +_ \ _ {d_ E m _ J ^ (p _ E0 ))+J W {0 _ E(0 ))2 (Al)  
P E(P) E(p) E (PY E (p)

 ~ ( d - E ( a ) ) ( P - E ( P ) )
EiP)z

Take expectation on both sides of equation (A. I) and simplify it using E( a -  E( a )) = 0, 

E(P -  E(p))= 0 , and the definitions of variance-covariance

£(4) + —^ E ( d  -  E(d)) -  £(^)) (A.2)
p  E{p) E(P) E(pY

1 @ -E (0 -E (0 ))2------- £ ( d - £ ( d ) ) ( / ? -£(/?)) = ̂ V a r ( f i )  -  — i -  Cov(d, p)
E{0) E(P) E($) E(p) E(p)E(P)

E(d)
E(0)

L t Var(P) Cov(a.P)
E(p)1 E(d)E(p)

Further simplifying the second part of the right side o f equation (A.2) by applying the

formula L + x -  y = 1 + * (when both x  and y are small, x  = , and y = Cov(-d,P) ) yje|ds
l + y E 0 )  E(a)E(P)
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£ ( - r ) = -
E(d)

1

+

c 
^

E(P) l  ( Cov{d,p) 
E(d)E(P)

(A.3)

Small Var($ )  an(j Cov(a,$) imp|y that both & and P  are statistically significant30.
E ( p )  E(a)E(p)

Gt *
Equation (A.3) shows that — is a biased estimator of E â l  by a factor of

P  E 0 )

1+ Var($)
E(P)2

1 +
Cov(d.p)
E(a)E(,p)

This

a
bias problem can be partially corrected by multiplying — by the inverse of that factor, which is

P

the shrinkage factor 5 =
1 +

Covja.P)
E{a)E(p)

1 +
Var(P)
E 0 ) 2

. On average,

0
E{&)

’ % . Var{p) ' 
E 0 ) 2

j , C o v ( d , 4 )  

E(a)E(P) E(a)
E(0) j , Cov(a,P) 

E{a)E{P)
.  Var(P) 

E(P)2
E(p)

Therefore, the MELO solution is the same as Taylor second-order approximation under

the condition that both and are small, or in other words, when both & and P
E ( p f  E(d)E(p)

are statistically significant. On the other hand when either Yar^  or Cov^:J?^ is large, these
E(f})2 E(d)E(,P)

two approaches are not the same, and the MELO approach does not necessarily reduce bias.
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4.8.2 Derivation of MELO Estimate o f Truncated Mean WTP+

The derivation of equation (3.3) is analogous to that of equation (3.1). First, following 

equation (3.1), the MELO estimate of the truncated WTP* can be written as

WTKew <B 1 >

cov(ln(l + ea ),fl )
+ ^ E(ln(\ + ea ))E( P ) 

, + v o * £ ! 
E tP ?

To approximate the posterior mean and covariance of ln(l + e“ ) is S*, the Delta method 

is applied. Taking the second-order Taylor expansion of ln(l + ea ) around E(a) ,

a -EW
ln(l + ea ) = E(a) + ------- ( «  -  E(a))+— ---- ^ j = - ( a  -  E(a))’ (B.2)

1 + e 2(1+ e £(a))

Taking expectations on both sides of equation (B.2) yields the approximated expression 

for posterior mean of ln( 1 + ea )

„-E( a )
E f a l + S  > ) -& « )+ — {’̂ s y -V arta) (B.3)

Similarly, the delta method (that linearlizes around E( a  ))  is used to approximate the 

posterior covariance,

A A

30 When p  is statistically significant for example, j — > 2.0, and therefore, — gr—  < 0.25.
std( 0  ) P
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E ( a )

Cov(ln(l + ea ),/3)=(ln( 1+ea ))'Cov(a,0 )  =----- —  C ov(a) (B.4)
l + e 1 1

Finally, substituting equations (B.3) and (B.4) into S* in equation (B.l) and using 

E (a )= a , = Cov(a,fi ) = C ov(a,fi), and Var(a) = Var(a) under diffuse prior, we

get equation (3.3).

Similarly, £S^^£L<.025 since correlation is less than 1 in absolute value.
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Prob(Yes)

0

Figure 4.1 Dichotomous Choice (DC) Willingness-to-pay (WTP) Model
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Table 4*1 Empirical Distributions of the Estimated Median WTP.

B ~U nif( 0,20) B -  Unif( 0,10) B ~U nif( 10,20)

ML MELO ML MELO ML MELO

Minimum -13.89 5.10 -113.82 -0.40 -361.30 9.71

Maximum 16.13 15.79 34.03 9.71 48.17 17.50

Mean 9.38 9.83 7.01 7.31 3.07 12.67

MSE 16.92 4.69 371.04 11.81 2864.8 9.79

Note: a  = 2, fi = 0.2, median WTP = — = 10, N = 30, and number of experiments = 500.
P
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Table 4-2 Empirical Distribution of the Estimated Truncated Mean WTP*.

B~(Jnif( 0,20) B ~ Unif{ 0,10) B -  Unif( 10,20)

ML MELO ML MELO ML MELO

Minimum 6.65 6.32 -831.75 -2.26 -100.04 -0.34

Maximum 21.56 13.86 124.45 10.81 20.38 15.05

Mean 11.16 10.18 -4.99 7.06 7.99 10.10

MSE 8.47 3.08 14,619 20.34 282.10 15.83

Note: 0  = 2, /? = 0 .2 , WTP* =  ̂_ [ 0.635 ,N  = 30, and number of experiments = 500.
P
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Table 4*3 Replication of the Monte Carlo Experiments in Kanninen’s (1995)

ML Approach MELO Approach

Mean MSE Mean MSE

ABase bid range 198.4 1120.3 194.7 1075

BExtended bid range 205.5 1984.9 196.0 1828.6

cMiddle Only 197.2 380.4 197.7 301.0

°Mostly middle, some tail 205.2 708.5 204.5 637.4

EUpper tail only 202.4 6190.7 230.1 3932.9

Note ft  = 0.009, true WTP = 200, N= 100, and number of experiments = 500.
A: The bid value are 3, 5, 10, 20,40, 50,60, 70, 80, 90, 100, 120, 200, 250, 300,400, 500, and 
700, five of each bid to total 100 observations.
B: The bid values are 3, 5,10,20, 30, 40, 50,60, 70, 80, 90, 100, 120, 500, 700, 1000, 1500, and 
2000, five each.
c: Bids are 106, 155,200,245, and 294,20 each.
D: Bids are 15 each at 106, 155,200, and 294 and 5 each at 3.5,500, 700, 10000.
E: Bids are 300,400,500,700, and 1000, 20 each.
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Table 4*4 Replication of the Monte Carlo Experiments in Cooper and Loomis (1993)

Minimum Maximum Mean MSE

A. All bids included in the Simulated Data Sets

oII ML 145.1 298.7 210.1 1270.1

MELO 142.9 292.0 206.0 1178.8

y = i ML 116.7 295.5 209.5 1480.1

MELO 115.9 285.7 204.5 1303.8

II ML 123.3 429.9 212.7 2648.8

MELO 121.8 382.6 206.3 2073.1

B. Middle Bids Excluded from the Simulated Data Sets

OII ML 115.3 275.0 205.5 1111.4

MELO 111.9 271.6 203.5 1119.8

Y = 1 ML 136.3 295.9 208.5 1491.1

MELO 134.4 293.3 206.4 1469.1

r  = 2 ML 125.9 312.9 207.0 1717.7

MELO 125.3 310.6 204.9 1644.9

C. Outer Bids Excluded in the Simulated Data Sets

©n ML -4910.1 669.0 173.0 0.271E+06

MELO 81.9 283.1 197.2 1171.6

r  = l ML -5360.2 7004.5 279.6 0.810E+06

MELO 108.1 272.4 189.5 1231.0

Y = 2 ML -1429.4 9316.5 267.0 0.917E+06

MELO 32.1 245.3 163.5 3217.5

Note P =0.0,8561, 6 = 0.00372, median WTP -  206.7, N =100, and number of experiments = 
500. Equal numbers of each bid value are assigned to each simulated data set.
A: the bid values are 2.5, 5,10,20, 30,40,50,60,70,80.90. 100,120,150,200, 250, 300,400, 
and 700.
B: the middle bids ($50 through $250) are excluded.
C: only the middle bids ($50 through $250) are included.
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Table 4*5 Re-etimates of Median WTP in Hanemann, Loomis, and Kanninen (1991)

Single-Bounded WTP Model Double-Bounded WTP Model

ML (Hanemann et al) $250 $151

MELO $211.67 $151.58

Note: The ML approach is used to estimate both SB and DB WTP Model in Hanemann et al 

(1991)
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Table 4*6 Re-estimates of Median WTP in Riddle and Loomis (1998)

Single-Bounded WTP Model Double-Bounded WTP Model

California/Oregon Combined Program

ML $32.16 $25.24

MELO $26.71 $25.05

Oregon Program Only

ML $16.52 $16.55

MELO $15.03 $16.30

California Program Only

ML $25.78 $19.90

MELO $18.24 $19.37
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Table 4-7 Estimated Median WTP under Diffuse and Informative Prior.

B ~ U n if(  0,20) B -  Unif(0,10) B  ~ U nif (10,20)

MELO MELO-I MELO MELO-I MELO MELO

Minimum 2.68 4.17 -1.22 4.09 7.67 8.48

Maximum 16.78 17.93 11.02 13.94 13.59 13.50

Mean 9.89 9.94 7.36 8.68 12.31 11.66

MSE 3.87 3.87 10.63 4.40 8.17 3.96

Note: MELO assumes diffuse prior. MELO-I has the informative prior restriction that a  > 0 and 

P > 0. Parameters are set at a  = 2, f t  -  0 .2 , median WTP = 10, N = 30, number of 

experiments = 500, and J  = 1000.
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